Skip to main content
Log in

Applications of the Simplest Equation Procedure to Some Fractional Order Differential Equations in Mathematical Physics

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The aim of the paper is to find the exact solutions to the nonlinear partial differential equations of fractional-order. The simplest equation procedure is handled for this purpose. The discussed method is utilized to equations which are space-time generalized reaction duffing model of conformable fractional-order which turns into six equations by giving different values to the parameters and space-time density-dependent diffusion–reaction model of conformable fractional-order. The considered equations are reduced to ordinary differential equations with the help of the wave transformations in the first step. According to the discussed methods form of the exact solutions are given by using the homogeneous balance number in step two. These exact solutions are substituted in the obtained ordinary differential equations without ignoring \(\phi '(\epsilon )=\phi ^2(\epsilon )+\varsigma \) in step three. When the obtained determining equation system is solved, the exact solutions of the given equations are obtained in the last step. The obtained solutions are expressed by rational, trigonometric and hyperbolic solutions. 3D, 2D and contour plots are drawn for some obtained exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

All data generated or analyzed during this study are included in this manuscript.

References

  1. Bin, L.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395(2), 684–693 (2012)

    Article  MathSciNet  Google Scholar 

  2. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. (1993)

  3. Gao, G., Sun, Z., Zhang, Y.: A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. Comput. Phys. 231(7), 2865–2879 (2012)

    Article  MathSciNet  Google Scholar 

  4. Kadem, A., Kılıçman, A.: Note on transport equation and fractional sumudu transform. Comput. Math. Appl. 62(8), 2995–3003 (2011)

    Article  MathSciNet  Google Scholar 

  5. Liu, W., Chen, K.: The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations. Pramana 81(3), 377–384 (2013)

    Article  Google Scholar 

  6. Mirzazadeh, M., Eslami, M., Ahmed, B.S., Biswas, A.: Dynamics of population growth model with fractional temporal evolution. Life Sci. J. 11(3), 224–227 (2014)

    Google Scholar 

  7. Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramana 82(3), 465–476 (2014)

    Article  Google Scholar 

  8. Pandir, Y., Gurefe, Y., Misirli, E.: New exact solutions of the time-fractional nonlinear dispersive KdV equation. Int. J. Model. Optim. 3(4), 349 (2013)

    Google Scholar 

  9. Tripathy, A., Sahoo, S., Rezazadeh, H., Izgi, Z.P.: New optical analytical solutions to the full nonlinearity form of the space-time Fokas–Lenells model of fractional-order. Int. J. Mod. Phys. B 36(14), 2250058 (2022)

    Article  Google Scholar 

  10. Odabasi, M., Pinar, Z., Kocak, H.: Analytical solutions of some nonlinear fractional-order differential equations by different methods. Math. Methods Appl. Sci. 44(9), 7526–7537 (2021)

    Article  MathSciNet  Google Scholar 

  11. Pinar, Z.: On the explicit solutions of fractional Bagley–Torvik equation arises in engineering. Int. J. Optim. Control Theor. Appl. (IJOCTA) 9(3), 52–58 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ala, V., Rakhimzhanov, B.: Exact solutions of beta-fractional Fokas–Lenells equation via sine-cosine method

  13. Ala, V., Shaikhova, G.: Analytical solutions of nonlinear beta fractional schrödinger equation via sine–cosine method. Lobachevskii J. Math. 43(11), 3033–3038 (2022)

    Article  MathSciNet  Google Scholar 

  14. Volkan, A.: Exact solutions of nonlinear time fractional schrödinger equation with beta-derivative. Fundam. Contemp. Math. Sci. 4(1), 1–8 (2023)

    Google Scholar 

  15. Ala, V.: New exact solutions of space-time fractional Schrödinger–Hirota equation. Bull Karagand Uni Math Series (2022). https://doi.org/10.31489/2022M3/17-2

    Article  Google Scholar 

  16. Wang, G., Liu, X., Zhang, Y.: Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 18(9), 2321–2326 (2013)

    Article  MathSciNet  Google Scholar 

  17. Alzaidy, J.F.: Fractional sub-equation method and its applications to the space-time fractional differential equations in mathematical physics. Br. J. Math. Comput. Sci 3(2), 153–163 (2013)

    Article  Google Scholar 

  18. Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by (g’/g)-expansion method. Chin. Phys. B 22(11), 110202 (2013)

    Article  Google Scholar 

  19. Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. In Abstract and Applied Analysis, vol. 2013. Hindawi (2013)

  20. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Script. 2009(T136), 014016 (2009)

    Article  Google Scholar 

  21. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized burgers and korteweg-de vries equations. J. Math. Anal. Appl. 393(2), 341–347 (2012)

    Article  MathSciNet  Google Scholar 

  22. Chen, C., Jiang, Y.-L.: Lie group analysis method for two classes of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 26(1–3), 24–35 (2015)

    Article  MathSciNet  Google Scholar 

  23. Odibat, Z., Momani, S.: A generalized differential transform method for linear partial differential equations of fractional order. Appl. Math. Lett. 21(2), 194–199 (2008)

    Article  MathSciNet  Google Scholar 

  24. Guo-cheng Wu and EWM Lee: Fractional variational iteration method and its application. Phys. Lett. A 374(25), 2506–2509 (2010)

    Article  MathSciNet  Google Scholar 

  25. Jiang, Y.-L., Ding, X.-L.: Nonnegative solutions of fractional functional differential equations. Comput. Math. Appl. 63(5), 896–904 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zafar, A., Raheel, M., Bekir, A., Razzaq, W.: The conformable space-time fractional Fokas–Lenells equation and its optical soliton solutions based on three analytical schemes. Int. J. Mod. Phys. B 35(01), 2150004 (2021)

    Article  MathSciNet  Google Scholar 

  27. Zayed, E.M.E., Amer, Y.A.: Exact solutions for the nonlinear kpp equation by using the riccati equation method combined with the g/g-expansion method. Sci. Res. Essays 10(3), 86–96 (2015)

    Article  Google Scholar 

  28. Hariharan, G.: The homotopy analysis method applied to the Kolmogorov–Petrovskii–piskunov (kpp) and fractional kpp equations. J. Math. Chem. 51(3), 992–1000 (2013)

    Article  MathSciNet  Google Scholar 

  29. Daftardar-Gejji, V., Bhalekar, S.: Solving multi-term linear and non-linear diffusion-wave equations of fractional order by adomian decomposition method. Appl. Math. Comput. 202(1), 113–120 (2008)

    MathSciNet  Google Scholar 

  30. Zafar, A., Raheel, M., Ali, K., Razzaq, W.: On optical soliton solutions of new Hamiltonian amplitude equation via Jacobi elliptic functions. Eur. Phys. J. Plus 135(8), 1–17 (2020)

    Article  Google Scholar 

  31. Gepreel, K.A.: The homotopy perturbation method applied to the nonlinear fractional Kolmogorov–Petrovskii–Piskunov equations. Appl. Math. Lett. 24(8), 1428–1434 (2011)

    Article  MathSciNet  Google Scholar 

  32. Serife Muge Ege and Emine Misirli: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 2014(1), 135 (2014)

    Article  MathSciNet  Google Scholar 

  33. Topsakal, M., Guner, O., Bekir, A., Unsal, O.: Exact solutions of some fractional differential equations by various expansion methods. In: Journal of Physics: Conference Series, vol. 766, p 012035. IOP Publishing (2016)

  34. Baleanu, D., Uğurlu, Y., Kilic, B., et al.: Improved (g’/g)-expansion method for the time-fractional biological population model and Cahn–Hilliard equation. J. Comput. Nonlinear Dyn. 10(5), 051016 (2015)

    Article  Google Scholar 

  35. Eslami, M., Vajargah, B.F., Mirzazadeh, M., Biswas, A.: Application of first integral method to fractional partial differential equations. Indian J. Phys. 88, 177–184 (2014)

    Article  Google Scholar 

  36. Jafari, H., Tajadodi, H., Baleanu, D., Al-Zahrani, A.A., Alhamed, Y.A., Zahid, A.H.: Fractional sub-equation method for the fractional generalized reaction duffing model and nonlinear fractional Sharma–Tasso–Olver equation. Central Eur. J. Phys. 11, 1482–1486 (2013)

    Google Scholar 

  37. Rezazadeh, H., Korkmaz, A., Eslami, M., Vahidi, J., Asghari, R.: Traveling wave solution of conformable fractional generalized reaction duffing model by generalized projective Riccati equation method. Opt. Quant. Electron. 50, 1–13 (2018)

    Article  Google Scholar 

  38. Sonmezoglu, A. et al.: Exact solutions for some fractional differential equations. Adv. Math. Phys. 2015 (2015)

  39. DEMİRBİLEK, U., ALA, V., MAMEDOV, K.R.: New traveling wave solutions of nonlinear time fractional duffing model via ibsfm. J. Appl. Comput. Sci. Math. 14(30) (2020)

  40. Güner, Ö., Bekir, A.: Exact solutions of some fractional differential equations arising in mathematical biology. Int. J. Biomath. 8(01), 1550003 (2015)

    Article  MathSciNet  Google Scholar 

  41. Esen, H., Ozdemir, N., Secer, A., Bayram, M., Sulaiman, T.A., Ahmad, H., Yusuf, A., Albalwi, M.D.: On the soliton solutions to the density-dependent space time fractional reaction–diffusion equation with conformable and m-truncated derivatives. Opt. Quantum Electron. 55(10), 923 (2023)

    Article  Google Scholar 

  42. Khalil, R., Al Horani, M.: Abdelrahman Yousef, and Mohammad Sababheh. A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  43. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  Google Scholar 

  44. Abdeljawad, T., Alhorani, M., Khalil, R.: Conformable fractional semigroups of operators. J. Semigroup Theory Appl. 2015, :Article–ID (2015)

  45. Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations. Appl. Math. Comput. 285, 141–148 (2016)

    MathSciNet  Google Scholar 

  46. Zafar, A., Rezazadeh, H., Reazzaq, W., Bekir, A.: The simplest equation approach for solving non-linear tzitzéica type equations in non-linear optics. Mod. Phys. Lett. B 35(07), 2150132 (2021)

    Article  Google Scholar 

  47. Chen, C., Jiang, Y.-L.: Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 75(8), 2978–2988 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Akbulut.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaq, W., Zafar, A. & Akbulut, A. Applications of the Simplest Equation Procedure to Some Fractional Order Differential Equations in Mathematical Physics. Int. J. Appl. Comput. Math 10, 56 (2024). https://doi.org/10.1007/s40819-024-01687-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01687-8

Keywords

Navigation