Skip to main content
Log in

Slow Motion Past a Spheroid Implanted in a Brinkman Medium : Slip Condition

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

The current work deals with the Stokes incompressible flow past an impermeable spheroidal particle, a particle of slightly deformed spherical shape, implanted in a Brinkman’s porous media. The problem is perused by considering the slip flow boundary conditions at the interface. An analytical result for the drag force affecting on the spheroid is evaluated. Both the cases of an oblate and a prolate spheroids are analyzed. Dependence of drag coefficient in relation to different important dimensionless parameters including permeability, deformation, and slip are visualized using graphs and tables. The effect of slip is observed to have a remarkable impact in raising the drag. Several notable results are derived from the ongoing work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Darcy, H.P.G.: Les fontaines publiques de la ville de dijon. Victor Delmont, Paris (1856)

    Google Scholar 

  2. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1(1), 27–34 (1949)

  3. Padmavathi, B.S., Amarnath, T., Palaniappan, D.: Stokes flow about a porous spherical particle. Arch. Mech. 46, 191–199 (1994)

    MATH  Google Scholar 

  4. Bhupen, B.: Flow of a Newtonian fluid past an impervious sphere embedded in a porous medium. Indian J. Pure Appl. Math. 27(12), 1249–1256 (1996)

  5. Pop, I., Ingham, D.B.: Flow past a sphere embedded in a porous medium based on Brinkman model. Int. Comm. Heat Mass Trans. 23(6), 865–874 (1996)

    Article  Google Scholar 

  6. Rudraiah. N., Shivakumara, I.S., Palaniappan, D., Chandrasekhar, D.V.: Flow past an impervious sphere embedded in a porous medium based on non Darcy model. In: Proc Seventh Asian Cong Fluid Mech. 565–568 (1997)

  7. Feng, J., Ganatos, P., Weinbaums, S.: Motion of a sphere near planar confining boundaries in a Brinkman medium new block. J. Fluid Mech. 375, 265 (1998)

    Article  Google Scholar 

  8. Srinivasacharya, D., Ramana Murthy, J.V.: Flow past an axisymmetric body embedded in a saturated porous media. C. R. Mecanique 330, 417–423 (2002)

    Article  Google Scholar 

  9. Rudraiah, N., Chandrashekhar, D.V.: Flow past an impermeable sphere embedded in a porous medium with Brinkman model. Int. J. Appl. Mech. Eng. 10, 145–158 (2005)

    MATH  Google Scholar 

  10. Kohr, M., Raja Sekar, G.P.: Existence and uniqueness result for two-dimensional porous media flows with porous inclusions based on Brinkman equation. Eng. Anal. Boundary Elem. 31(7), 604–613 (2007)

    Article  Google Scholar 

  11. Pal, D., Mondal, H.: Radiation effects on combined convection over a vertical flat plate embedded in a porous medium of variable porosity. Meccanica 44(2), 133–144 (2009)

    Article  MathSciNet  Google Scholar 

  12. Wang, C.Y.: Darcy-Brinkman flow with solid inclusions. Chem. Eng. Commun. 197, 261–274 (2010)

  13. Grosan, T., Postelnicu, A., Pop, I.: Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium. Transp. Porous Med. 81, 89–103 (2010)

    Article  MathSciNet  Google Scholar 

  14. Deo, S., Gupta, B.R.: Drag on a porous sphere embedded in another porous medium. J. Porous Media 13(11), 1009–1016 (2010)

    Article  Google Scholar 

  15. Saxena, P., Kumar, L.: Flow of viscous fluid through different porous structures embedded in porous medium. J. Porous Media. 15(12), 1125–1135 (2012)

  16. Leontev, N.E.: Flow past a cylinder and a sphere in a porous medium within the framework of the Brinkman equation with the Navier boundary condition. Fluid Dyn. 49(2), 232–237 (2014)

    Article  MathSciNet  Google Scholar 

  17. Prasad, M.K., Srinivasacharya, D.: Micropolar fluid flow through a cylinder and a sphere embedded in a porous medium. Int. J. Fluid Mech. Res. 44(3), 229–240 (2017)

    Article  Google Scholar 

  18. Ansari, I.A., Deo, S.: Magnetohydrodynamic viscous fluid flow past a porous sphere embedded in another porous media. Spec. Top. Rev. Porous Media Int. J. 9(2), 191–200 (2018)

  19. Shreen, El-Sapa., Saad, E.I., Faltas, M.S.: Axisymmetric motion of two spherical particles in a Brinkman medium with slip surfaces. Eur. J. Mech. B/Fluids. 67, 306–313 (2018)

  20. Krishnan, R., Shukla, P.: Drag on a fluid sphere embedded in a porous medium with solid core. Int. J. Fluid Mech. Res. 46(3), 219–228 (2019)

  21. Prasad, M.K., Bucha, T.: MHD on a cylinder implanted in a porous media of micropolar fluid. J. Theoretical Appl. Mech., Sofia. 50(4), 307–320 (2020)

    MathSciNet  Google Scholar 

  22. Prasad, M.K., Bucha, T.: Influence of MHD on micropolar fluid flow past a sphere implanted in porous media. Ind. J. Phys. 95(6), 1175–1183 (2021)

    Article  Google Scholar 

  23. Acrivos, A., Taylor, T.D.: The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chem. Eng. Sci. 19, 445–451 (1964)

    Article  Google Scholar 

  24. Oberbeck, A., Stationare, U.: Fliissigkeitsbewegungen mit Berucksichtigung der inneren Reibung. J. Reine Angew. Math. 81, 62–80 (1876)

    MathSciNet  Google Scholar 

  25. Sampson, R.A.: On Stoke’s current function. Phil. Trans. R. Soc. Lond. A. 182, 449–518 (1891)

  26. Ramkissoon, H: Stokes flow past a slightly deformed fluid sphere, Z. Angew. Math. Phys. 37, 859–866 (1986)

  27. Palaniappan, D.: Creeping flow about a slightly deformed sphere. Z. Angew. Math. Phys. 45, 832–838 (1994)

  28. Dassios, G., Hadjinicolaou, M., Coutelieris, F.A., Payatakes, A.C.: Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int. J. Eng. Sci. 33(10), 1465–1490 (1995)

    Article  Google Scholar 

  29. Ramkissoon, H.: Slip flow past an approximate spheroid. Acta Mech. 123, 227–233 (1997)

    Article  MathSciNet  Google Scholar 

  30. Zlatanovski, T.: Axi-symmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Math. 52(1), 111–126 (1999)

    Article  MathSciNet  Google Scholar 

  31. Deo, S., Datta, S.: Slip flow past a prolate spheroid. Indian J. Pure Appl. Math. 33(6), 903–909 (2002)

    MATH  Google Scholar 

  32. Srinivasacharya, D.: Creeping flow past a porous approximate sphere. Z. Angew. Math. Mech. 83(7), 499–504 (2003)

    Article  Google Scholar 

  33. Senchenko, S., Keh, H.J.: Slipping Stokes flow around a slightly deformed sphere. Phys. Fluids. 18(8), 088104 (2006)

    Article  Google Scholar 

  34. Srinivasacharya, D.: Flow past a porous approximate spherical shell. Z. Angew. Math. Phys. 58, 646–658 (2007)

    Article  MathSciNet  Google Scholar 

  35. Deo, S.: Stokes flow past a swarm of deformed porous spheroidal particles with Happel boundary condition. J. Porous Media 12(4), 347–359 (2009)

    Article  Google Scholar 

  36. Chang, Y.C., Keh, H.J.: Translation and rotation of slightly deformed colloidal spheres experiencing slip. J. Colloid Interface Sci. 330, 201–210 (2009)

    Article  Google Scholar 

  37. Saad, E.I.: Translation and rotation of a porous spheroid in a spheroidal container. Can. J. Phys. 88, 689–700 (2010)

    Article  Google Scholar 

  38. Saad, E.I.: Stokes flow past an assemblage of axisymmetric porous spheroidal particle in cell models. J. Porous Media. 15(9), 849–866 (2012)

    Article  Google Scholar 

  39. Yadav, P.K., Deo, S.: Stokes flow past a porous spheroid embedded in another porous medium. Meccanica 47, 1499–1516 (2012)

    Article  MathSciNet  Google Scholar 

  40. Sherief, H.H., Faltas, M.S., Saad, E.I.: Slip at the surface of an oscillating spheroidal particle in a micropolar fluid. ANZIAM J. 55(E), E1–E50 (2013)

    Article  MathSciNet  Google Scholar 

  41. Srinivasacharya, D., Prasad, M.K.: Axisymmetric creeping motion of a porous approximate sphere with an impermeable core. Eur. Phys. J. Plus. 128, 9 (2013)

    Article  Google Scholar 

  42. Yadav, P.K., Tiwari, A., Singh, P.: Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mech. 229, 1869–1892 (2018)

    Article  MathSciNet  Google Scholar 

  43. Prasad, M.K., Bucha, T.: Steady viscous flow around a permeable spheroidal particle. Int. J. Appl. Comput. Math. 5, 109 (2019)

    Article  MathSciNet  Google Scholar 

  44. Happel, J., Brenner, H.: Low Reynolds number hydrodynamics. Nijhoff, The Hague (1983)

    MATH  Google Scholar 

  45. Navier, C.L.M.H.: Memoirs de l’Academie Royale des Sciences de l’Institut de France 1, 414–416 (1823)

  46. Sherief, H.H., Faltas, M.S., Shreen, El-Sapa.: Slow motion of a slightly deformed spherical droplet in a microstretch fluid. Microsystem Technologies 24(8), 3245–3259 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Madasu.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

Applying the boundary conditions (14)-(15) to the first order in \(\beta _{m}\), we obtain the following system of algebraic equations

$$\begin{aligned}&\left[ \,1+a_{2}+b_{2}\,S_{2}\right] P_{1}(\zeta )+ \beta _{m}\xi _{1}(P_{1}(\zeta )\,\vartheta _{m}(\zeta )+\vartheta _{2}(\zeta )\,P_{m-1}(\zeta ))\nonumber \\&\quad + \sum _{n=3}^{\infty }\left[ \,A_{n}+B_{n}\,S_{3}\right] P_{n-1}(\zeta )=0 \end{aligned}$$
(A.1)
$$\begin{aligned}&\left[ 2\,\lambda -(\lambda +6)\,a_{2}-((6+\alpha ^2+\lambda )S_{2}+\alpha \,(2+\lambda )S_{1})\,b_{2}\right] \vartheta _{2}(\zeta )\nonumber \\&\quad + \beta _{m}\xi _{2}\vartheta _{2}(\zeta )\,\vartheta _{m}(\zeta )+\beta _{m}\xi _{3}\vartheta _{2}(\zeta )P_{1}(\zeta )P_{m-1}(\zeta )- \sum _{n=3}^{\infty }\left[ \xi _{4}\,A_{n}+\xi _{5}\,B_{n}\right] \vartheta _{n}(\zeta )=0\nonumber \\ \end{aligned}$$
(A.2)

\(S_{1}=K_{1/2}(\alpha )\)       \(S_{2}=K_{3/2}(\alpha )\)

\(S_{3}=K_{n-1/2}(\alpha )\)       \(S_{4}=K_{n-3/2}(\alpha )\)

\(w_{1}=S_{2}+\alpha \,S_{1}\)       \(w_{2}=3\,S_{2}+\alpha \,S_{1}\)

$$\begin{aligned} \xi _{1}=&2-a_{2}-b_{2}\,w_{1}\\ \xi _{2}=&2\lambda +2(\lambda +9)\,a_{2}+(\alpha ^2(\lambda +3)+2\lambda +18)S_{2}+\alpha (6+\alpha ^2)S_{1}\\ \xi _{3}=&-2(9a_{2}+3\,w_{2})\\ \xi _{4}=&\lambda (n-1)+2(n^2-1)\\ \xi _{5}=&(\xi _{4}+\alpha ^2)S_{3}+\alpha (2+\lambda )S_{4} \end{aligned}$$

On solving the leading terms of equations (A.1)-(A.2) we will get the values of \(a_{2}\) and \(b_{2}\). Since the expressions are very lengthy we are not presenting it here. To obtain the remaining arbitrary constants \(A_{n}\) and \(B_{n}\) we require the following identities

$$\begin{aligned}&\vartheta _{m}(\zeta )\,\vartheta _{2}(\zeta )={\bar{a}}_{m-2}\vartheta _{m-2}(\zeta )+ {\bar{a}}_{m}\vartheta _{m}(\zeta )-{\bar{a}}_{m+2}\vartheta _{m+2}(\zeta ) \end{aligned}$$
(A.3)
$$\begin{aligned}&\vartheta _{m}(\zeta )\,P_{1}(\zeta )+P_{m-1}(\zeta )\,\vartheta _2(\zeta )={\bar{a}}_{m-2}P_{m-3}(\zeta )+{\bar{a}}_{m}\,P_{m-1}(\zeta )- {\bar{a}}_{m+2}\,P_{m+1}(\zeta ) \qquad \end{aligned}$$
(A.4)
$$\begin{aligned}&P_1(\zeta )\,\vartheta _2(\zeta )\,P_{m-1}(\zeta )={\bar{b}}_{m-2}\vartheta _{m-2}(\zeta )+ {\bar{b}}_{m}\vartheta _{m}(\zeta )+ {\bar{b}}_{m+2}\vartheta _{m+2}(\zeta )\nonumber \\&{\bar{a}}_{m-2}=-\frac{(m-2)(m-3)}{2(2\,m-1)(2\,m-3)},\,\,{\bar{a}}_{m}=\frac{m(m-1)}{(2\,m+1)(2\,m-3)}\nonumber \\&{\bar{a}}_{m+2}=-\frac{(m+1)(m+2)}{2(2\,m-1)(2\,m+1)}\nonumber \\&{\bar{b}}_{m-2}=(m-1){\bar{a}}_{m-2},\,\,{\bar{b}}_{m}={\bar{a}}_{m}/2,\,\,{\bar{b}}_{m+2}=-m\,{\bar{a}}_{m+2} \end{aligned}$$
(A.5)

Using these in (A.1) and (A.2), we get \(A_{n}=0\) and \(B_{n}=0\), for \(n\ne m-2, m, m+2\)

and when \(n=m-2, m, m+2\), we have the following system

$$\begin{aligned}&\xi _{1}\,{\bar{a}}_{n}+A_{n}+B_{n}\,S_{3}=0 \end{aligned}$$
(A.6)
$$\begin{aligned}&\xi _{2}\,{\bar{a}}_{n}+\xi _{3}\,{\bar{b}}_{n}-\xi _{4}\,A_{n}-\xi _{5}\,B_{n}=0 \end{aligned}$$
(A.7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madasu, K. ., Kaur, M. & Bucha, T. Slow Motion Past a Spheroid Implanted in a Brinkman Medium : Slip Condition. Int. J. Appl. Comput. Math 7, 162 (2021). https://doi.org/10.1007/s40819-021-01104-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01104-4

Keywords

Navigation