Skip to main content
Log in

Resonance Oscillation and Transition to Chaos in \(\phi ^8\)-Duffing–Van der Pol Oscillator

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, an exciting and interesting transition to chaos in a complex \(\phi ^8\)-DVP oscillator is studied. We first examine the stability conditions for the fixed points and then analyzed the resonance oscillation using the multiple scale method. The regions of chaotic and periodic behavior which leads to multi-stability of attractors and changes in the geometry of the attractors via bifurcation parameter \((\gamma )\), the driving force (f) and its frequency \((\omega )\)—a phenomenon of chaotification were further obtained. Our analytical predictions confirm the numerical results in which the model exhibits imbricated period-doubling, Hopf bifurcation, intermittent bifurcation, sudden chaos, unstable states, and hidden dynamics. We explore the chaotic behavior of the new model using the indicators, namely bifurcation diagrams, Lyapunov exponents, Poincáre cross-sections, phase portraits and time series for better visualization and characterization. Finally, the circuit realization of the proposed model is designed using MultiSIM software and hardware components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Lorenz, E.N.: Deterministic non-periodic flow. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Karmeshu, V., Jain, V.P.: Non-linear models of social systems. Economic and Political Weekly 3678–3685, (2003)

  3. Effah-Poku, S., Obeng-Denteh, W., Dontwi, I.K.: A study of chaos in dynamical systems. J. Math. (2018). https://doi.org/10.1155/2018/1808953

    Article  MathSciNet  MATH  Google Scholar 

  4. Vincent, U.E., Kenfack, A.: Synchronization and bifurcation structures in coupled periodically forced non-identical Duffing oscillators. Phys. Scr. 77, 045005 1–7 (2008). https://doi.org/10.1088/0031-8949/77/04/045005

    Article  MATH  Google Scholar 

  5. Shen, J.H., Lin, K.C., Chen, S.H., Sze, K.Y.: Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn. 52, 403–414 (2008). https://doi.org/10.1007/s11071-007-9289-z

    Article  MATH  Google Scholar 

  6. Yuan, S., Jiang, T., Jing, Z.: Bifurcation and Chaos in the Tinkerbell map. Int. J. Bifurc. Chaos 21(11), 3137–3156 (2011). https://doi.org/10.1142/S021812741103058

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, P., Yuan, Y., Xu, J.: Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback. Commun. Nonlinear Sci. Numer. Simul. 7, 69–91 (2002)

    Article  MathSciNet  Google Scholar 

  8. Mosekilde, E., Zhusubaliyev, Z., Laugesen, J.L., Yanochkina, O.O.: Bifurcation structure of the C-type period-doubling transition. Phys. D Nonlinear Phenomena 241(5), 488–496 (2012). https://doi.org/10.1016/j.physd.2011.11.004

    Article  MATH  Google Scholar 

  9. Li, B., He, Q.: Bifurcation analysis of a two-dimensional discrete Hindmarsh-Rose type model. Adv. Differ. Equ. 2019(1), 124 (2019). https://doi.org/10.1186/s13662-019-2062-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Z., Jiang, T., Jing, Z.: Bifurcations and Chaos of Duffing-van der Pol equation with nonsymmetric nonlinear restoring and two external forcing terms. Int. J. Bifurc. Chaos (2014). https://doi.org/10.1142/S0218127414300110

    Article  MATH  Google Scholar 

  11. Kenfack, A.: Bifurcation structure of two coupled periodically driven double-well Duffing oscillators. Chaos, Solitons Fractals 15, 205–218 (2003)

    Article  MathSciNet  Google Scholar 

  12. Van der Pol, B.: On “Relaxation Oscillations” I. Philos. Mag. 2, 978–992 (1926)

  13. Adelakun, A.O., Njah, A.N., Olusola, O.I., Wara, S.T.: Computer and hardware modeling of periodically forced \(\phi ^6\) van der Pol oscillator. Active Passive Electron. Component (2016). https://doi.org/10.1155/2016/3426713

    Article  Google Scholar 

  14. Monwanou, A.V., Hinvi, L.A., Miwadinou, C.H., Chabi Orou, J.B.: Nonlinear dynamics of system oscillations modeled by a forced Van der Pol generalized oscillator. Int. J. Eng. Appl. Sci. 4(8), 28–35 (2017)

    Google Scholar 

  15. Rowat, P.F., Selverston, A.I.: Modeling the gastric mill central pattern generator of the lobster with a relaxation-oscillator network. J. Neurophysiol. 70(3), 1030–1053 (1993)

    Article  Google Scholar 

  16. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257–278 (1955)

    Article  Google Scholar 

  17. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  18. Cartwright, J.H.E., Hernández-Garcıa, E., Piro, O.: Burridge–Knopoff models as elastic excitable media. Phys. Rev. Lett. 79(3), 527–530 (1997)

    Article  Google Scholar 

  19. Morales, J.E., James, G., Tonnelier, A.: Solitary waves in the excitable Burridge–Knopoff model. Wave Motion 76, 103–121 (2018). https://doi.org/10.1016/j.wavemoti.2017.10.001

    Article  MathSciNet  MATH  Google Scholar 

  20. Yu, J., Zhang, R., Pan, W., Schimansky-Geier, L.: Period-doubling cascades and strange attractors in the triple-well \(\phi ^6\)-Van der Pol oscillator. Phys. Scr. (2008). https://doi.org/10.1088/0031-8949/78/02/025003

    Article  MathSciNet  MATH  Google Scholar 

  21. Venkatesan, A., Lakshmanan, M.: Bifurcation and chaos in the double well Duffing- van der Pol oscillator: numerical and analytical studies. Phys. Rev. E 56(6), 6321–6330 (1997)

    Article  MathSciNet  Google Scholar 

  22. Kao, Y.-H., Wang, C.-S.: Analog study of bifurcation structures in a Van der Pol oscillator with a nonlinear restoring force. Phys. Rev. E 48, 2514–20 (1993)

    Article  Google Scholar 

  23. Ravisankar L, Ravichandran V, Chinnathambi V (2012) Prediction of Horseshoe Chaos in Duffing–Van Der Pol oscillator driven by different periodic forces. RESEARCH INVENTY: Int. J. Eng. Sci. 1(5), 17–25 (2012)

  24. Rajasekar, S., Parthasarathy, S., Lakshmanan, M.: Prediction of horseshoe chaos in BVP and DVP oscillators. Chaos, Solitons Fractals 2, 271–280 (1992)

    Article  MathSciNet  Google Scholar 

  25. Moukam Kakmeni, F.M., Bowong, S., Tchawoua, C., Kaptouom, E.: Strange attractors and chaos control in a Duffing–van der Pol oscillator with two external periodic forces. J. Sound Vibr. 277(4–5), 783–799 (2004)

    Article  MathSciNet  Google Scholar 

  26. Adelakun, A.O., Njah, A.N., Olusola, O.I., Wara, S.T.: Electronic simulation and hardware implementation of two coupled periodically forced \(\phi ^6\) van der Pol oscillators and its application to secure communication. Adv. Theories Appl. 50, 7–16 (2015)

    Google Scholar 

  27. Siewe-Siewe, M., Moukam Kakmeni, F.M., Tchawoua, C., Woafo, P.: Bifurcations and Chaos in the triple-well -Van der Pol oscillator driven by external and parametric excitations. Phys. A 357, 383–396 (2005)

    Article  Google Scholar 

  28. Siewe-Siewe, M., Moukam, K.F., Tchawoua, M.C.: Resonant oscillation and homoclinic bifurcation in a Duffing–Van der Pol oscillator. Chaos, Solitons Fractals 21(4), 841–853 (2004)

    Article  MathSciNet  Google Scholar 

  29. Jeyakumari, S., Chinnathambi, V., Rajasekar, S., Sanjuan, M.A.F.: Analysis of vibrational resonance in a quintic oscillator. CHAOS 19, 043128 (2009)

    Article  Google Scholar 

  30. Baydoun, I.: Analytical formula for the roots of the general complex cubic polynomial. ffhal-01237234v2 (2018)

  31. Sayed, M., Mousa, A.A.: Vibration, stability, and resonance of angle-ply composite laminated rectangular thin plate under multiexcitations. Math. Probl. Eng. 2, 200 (2013). https://doi.org/10.1155/2013/418374

    Article  MathSciNet  MATH  Google Scholar 

  32. Rong, H.W., Wang, X.D., Xu, W., Fang, T.: Saturation and resonance of nonlinear system under bounded noise excitation. J. Sound Vibr. 291, 48–59 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The ideas of and contributions from A.N. Njah, O.I. Olusola and U.E. Vincent are gratefully acknowledged. I also thank the anonymous referees for their constructive and helpful suggestions.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Adelakun.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelakun, A.O. Resonance Oscillation and Transition to Chaos in \(\phi ^8\)-Duffing–Van der Pol Oscillator. Int. J. Appl. Comput. Math 7, 82 (2021). https://doi.org/10.1007/s40819-021-01005-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01005-6

Keywords

Navigation