Skip to main content
Log in

Navier’s Slip Effect on Mixed Convection Flow of Non-Newtonian Nanofluid: Buongiorno’s Model with Passive Control Approach

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This article is devoted to the study of Navier’s slip effect on MHD mixed convection boundary layer flow of non-Newtonian nanofluid over a stretching surface. The flow is induced due to the continuously stretching surface. The mathematical modeling of the flow situation, is governed by Buongiorno’s nanofluid model with passively controlled nanoparticle boundary condition. To analyze the flow field behavior, the similarity transformation approach is adopted. The approximate similar solution of the problem is obtained using finite element method. Effects of active flow parameters on the quantities of engineering interests viz. skin friction coefficient, Nusselt number and flow variables viz velocity, temperature and nanoparticle concentration, are presented graphically. The Numerical results of the present investigation are validated with earlier published results. The findings suggest that the velocity slip plays a vital role in skin friction coefficient and Nusselt number of non-Newtonian nanofluid. It has been observed that the Brownian diffusion does not have very promising impact on Nusselt number as compared to results obtained in previous studies with active control of wall nanoparticles. The potential application of present investigation are in various industrial manufacturing processes such as cooling and/or drying of textile and paper, rolling sheet drawn from a die, manufacturing of crystalline materials, polymeric sheets, glass sheets, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a :

Constant parameter (\(\hbox {s}^{-1}\))

A :

Rate of strain tensor (\(\hbox {s}^{-1}\))

b :

\(=\left( b_{x} ,b_{y} ,0\right) \) body force vector (N)

B :

Magnetic field (\(\hbox {kg}\,\hbox {s}^{-2}\,\hbox {A}^{-1}\))

\(\mathrm{Bi}\) :

Biot number

\(Cf_{x}\) :

Local skin friction coefficient

\(D_{B}\) :

Brownian diffusion coefficient (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(D_{T}\) :

Thermophoretic diffusion coefficient (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

f :

Dimensionless stream function

g :

Gravitational acceleration (\(\hbox {m}\,\hbox {s}^{-2}\))

\(Gr_{x}\) :

Grashof number

h :

Element size (m)

\(h_{f}\) :

Coefficient of convective heat transfer (\(\hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-1}\))

I :

Unit tensor

k :

Thermal conductivity (\(\hbox {W}\,\hbox {m}^{-1}\,\hbox {K}^{-1}\))

\(k^{*}\) :

Rosseland mean absorption coefficient (\(\hbox {m}^{-1}\))

\(k_{0}\) :

First order coefficient of short relaxation (\(\hbox {kg}\,\hbox {m}^{-1}\))

L :

Velocity slip factor (m)

M :

Magnetic parameter

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

p :

Pressure (Pa)

\(Nu_{x}\) :

Local Nusselt number

\(\Pr \) :

Prandtl number

\(\Pr _{eff}\) :

Effective Prandtl number

\(q_{r}\) :

Radiative heat flux (\(\hbox {W}\,\hbox {m}^{-2}\))

\(q_{s}\) :

Surface heat flux (\(\hbox {W}\,\hbox {m}^{-2}\))

R :

Radiation parameter

\(Re_{x}\) :

Local Reynolds number

s :

Dimensionless nanoparticle volume fraction

T :

Temperature (K)

\(T_{s}\) :

Temperature of the left side of surface (K)

\(T_{\infty }\) :

Temperature in free stream (K)

t :

Time (s)

\(u_{s}\) :

Stretching sheet velocity (\(\hbox {m}\,\hbox {s}^{-1}\))

\(u_{\mathrm{slip}}\) :

Slip velocity (\(\hbox {m}\,\hbox {s}^{-1}\))

V :

\(=\left( u,v,0\right) \) Velocity vector (\(\hbox {m}\,\hbox {s}^{-1}\))

x, y :

Cartesian coordinate axes (m)

\(\alpha \) :

Viscoelasticity parameter

\(\alpha _{m}\) :

Thermal diffusivity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\beta \) :

Thermal expansion coefficient (\(\hbox {K}^{-1}\))

\(\gamma \) :

Velocity slip parameter

\(\Upsilon \) :

Cauchy stress tensor (Pa)

\(\sigma \) :

Electrical conductivity (\(\hbox {S}\,\hbox {m}^{-1}\))

\(\rho \) :

Density (\(\hbox {kg}\,\hbox {m}^{-3}\))

\(\lambda \) :

Thermal buoyancy parameter

\(\phi \) :

Nanoparticle volume fraction

\(\lambda ^{*}\) :

Nanoparticle buoyancy force

\(\left( \rho C_{p} \right) _{np}\) :

Specific heat capacity of nanoparticles (\(\hbox {J}\,\hbox {K}^{-1}\))

\(\left( \rho C_{p} \right) _{nf}\) :

Specific heat capacity of the nanofluid (\(\hbox {J}\,\hbox {K}^{-1}\))

\(\theta \) :

Dimensionless temperature

\(\upsilon \) :

Kinematic coefficient of viscosity (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\(\psi \) :

Stream function (\(\hbox {m}^{2}\,\hbox {s}\))

\(\eta \) :

Similarity variable

\(\mu \) :

Dynamic viscosity (\(\hbox {kg}\,\hbox {m}^{-1}\hbox {s}^{-1}\))

\(\sigma ^{*}\) :

Stefan Boltzmann constant (\(\hbox {W}\,\hbox {m}^{-2}\,\hbox {K}^{-4}\))

\(\tau _{s}\) :

Surface shear stress (\(\hbox {kg}\,\hbox {m}^{-1}\,\hbox {s}^{-2}\))

References

  1. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 7(1), 26–28 (1961)

    Article  Google Scholar 

  2. Crane, L.J.: Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik ZAMP 21(4), 645–647 (1970)

    Article  Google Scholar 

  3. Siddappa, B., Abel, S.: Non-Newtonian flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 36(6), 890–892 (1985)

    Article  MATH  Google Scholar 

  4. Vajravelu, K.: Viscous flow over a nonlinearly stretching sheet. Appl. Math. Comput. 124(3), 281–288 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Fang, T., Chia-fon, F.L., Zhang, J.: The boundary layers of an unsteady incompressible stagnation-point flow with mass transfer. Int. J. Non-Linear Mech. 46(7), 942–948 (2011)

    Article  Google Scholar 

  6. Seth, G.S., Sharma, R., Kumbhakar, B., Chamkha, A.J.: Hydromagnetic flow of heat absorbing and radiating fluid over exponentially stretching sheet with partial slip and viscous and Joule dissipation. Eng. Comput. 33(3), 907–925 (2016)

    Article  Google Scholar 

  7. Damseh, R.A., Al-Odata, M.Q., Chamkha, A.J., Shannak, B.A.: Combined effect of heat generation or absorption and first-order chemical reaction on micropolar fluid flows over a uniformly stretched permeable surface. Int. J. Therm. Sci. 48, 1658–1663 (2009)

    Article  Google Scholar 

  8. Masuda, H., Ebata, A., Teramae, K.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of \(\text{ Al }_2\text{ O }_3\), \(\text{ SiO }_2\) and \(\text{ TiO }_2\) ultra-fine particles. Netsu Bussei 7(4), 227–233 (1993)

    Article  Google Scholar 

  9. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed. 231, 99–106 (1995)

    Google Scholar 

  10. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  11. Khan, W.A., Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53(11), 2477–2483 (2010)

    Article  MATH  Google Scholar 

  12. Rana, P., Bhargava, R.: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study. Commun. Nonlinear Sci. Numer. Simul. 17(1), 212–226 (2012)

    Article  MathSciNet  Google Scholar 

  13. Seth, G.S., Mishra, M.K.: Analysis of transient flow of MHD nanofluid past a non-linear stretching sheet considering Navier’s slip boundary condition. Adv. Powder Technol. 28(2), 375–384 (2017)

    Article  Google Scholar 

  14. Kuznetsov, A.V., Nield, D.A.: The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 65, 682–685 (2013)

    Article  Google Scholar 

  15. Nield, D.A., Kuznetsov, A.V.: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52(25), 5792–5795 (2009)

    Article  MATH  Google Scholar 

  16. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int. J. Therm. Sci. 77, 126–129 (2014)

    Article  Google Scholar 

  17. Jusoh, R., Nazar, R., Pop, I.: Flow and heat transfer of magnetohydrodynamic three-dimensional Maxwell nanofluid over a permeable stretching/shrinking surface with convective boundary conditions. Int. J. Mech. Sci. 124, 166–173 (2017)

    Article  Google Scholar 

  18. Halim, N.A., Haq, R.U., Noor, N.F.M.: Active and passive controls of nanoparticles in Maxwell stagnation point flow over a slipped stretched surface. Meccanica 52(7), 1527–1539 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kakaç, S., Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13), 3187–3196 (2009)

    Article  MATH  Google Scholar 

  20. Chamkha, A.J., Jena, S.K., Mahapatra, S.K.: MHD convection of nanofluids: a review. J. Nanofluids 4(3), 271–292 (2015)

    Article  Google Scholar 

  21. Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. Heat Mass Transf. 107, 778–791 (2017)

    Article  Google Scholar 

  22. Reddy, P.S., Chamkha, A.J.: Soret and Dufour effects on MHD convective flow of \(\text{ Al }_2\text{ O }_3\)-water and \(\text{ TiO }_2\)-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol. 27, 1207–1218 (2016)

    Article  Google Scholar 

  23. Ramreddy, C., Murthy, P., Chamkha, A.J., Rashad, A.: Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transf. 64, 384–392 (2013)

    Article  Google Scholar 

  24. Andersson, H.I., Bech, K.H., Dandapat, B.: Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int. J. Non-Linear Mech. 27(6), 929–936 (1992)

    Article  MATH  Google Scholar 

  25. Pal, D., Roy, N., Vajravelu, K.: Effects of thermal radiation and Ohmic dissipation on MHD Casson nanofluid flow over a vertical non-linear stretching surface using scaling group transformation. Int. J. Mech. Sci. 114, 257–267 (2016)

    Article  Google Scholar 

  26. Abbasbandy, S., Hayat, T., Alsaedi, A., Rashidi, M.M.: Numerical and analytical solutions for Falkner–Skan flow of MHD Oldroyd-B fluid. Int. J. Numer. Methods Heat Fluid Flow 24(2), 390–401 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Beard, D.W., Walters, K.: Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point, vol. 60(3), pp. 667–674 (1964)

  28. Sharma, A.K., Tiwari, A.K., Dixit, A.R.: Rheological behaviour of nanofluids: a review. Renew. Sustain. Energy Rev. 53, 779–791 (2016)

    Article  Google Scholar 

  29. Goyal, M., Bhargava, R.: Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet. Comput. Math. Math. Phys. 54(5), 848–863 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramzan, M., Yousaf, F.: Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 5(5), 057132 (2015)

    Article  Google Scholar 

  31. Chamkha, A.J.: Hydromagnetic combined heat and mass transfer by natural convection from a permeable surface embedded in a fluid-saturated porous medium. Int. J. Numer. Methods Heat Fluid Flow 10, 455–477 (2000)

    Article  MATH  Google Scholar 

  32. Al-Mudhaf, Chamkha, A.J.: Particle shape effects on ferrofuids flow and heat transfer under influence of low oscillating magnetic field. Heat Mass Transf. 42, 112–121 (2005)

    Article  Google Scholar 

  33. Chamkha, A.J.: Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer. Heat Transf. Part A Appl. 39, 511–530 (2001)

    Article  Google Scholar 

  34. Takhar, H., Chamkha, A., Nath, G.: Unsteady mixed convection flow from a rotating vertical cone with a magnetic field. Heat Mass Transf. 39, 297–304 (2003)

    Article  Google Scholar 

  35. Magyari, E., Chamkha, A.: Exact analytical results for the thermosolutal MHD Marangoni boundary layers. Int. J. Therm. Sci. 47, 848–857 (2008)

    Article  Google Scholar 

  36. Andersson, H.I.: MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 95(1), 227–230 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu, I.-C.: Flow and heat transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet subject to a transverse magnetic field. Int. J. Non-Linear Mech. 40(4), 465–474 (2005)

    Article  MATH  Google Scholar 

  38. Hussain, S.: Finite element solution for MHD flow of nanofluids with heat and mass transfer through a porous media with thermal radiation, viscous dissipation and chemical reaction effects. Adv. Appl. Math. Mech. 9(4), 904–923 (2017)

    Article  MathSciNet  Google Scholar 

  39. Sandeep, N., Kumar, B.R., Kumar, M.S.J.: A comparative study of convective heat and mass transfer in non-Newtonian nanofluid flow past a permeable stretching sheet. J. Mol. Liq. 212, 585–591 (2015)

    Article  Google Scholar 

  40. Sheikholeslami, M., Ganji, D.D.: External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid: Numerical and Analytical Studies. William Andrew, New York (2016)

    MATH  Google Scholar 

  41. Reddy, P.S., Sreedevi, P., Chamkha, A.J.: MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. Powder Technol. 307, 46–55 (2017)

    Article  Google Scholar 

  42. Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003)

    Article  MATH  Google Scholar 

  43. Haddad, Z., Oztop, H.F., Abu-Nada, E., Mataoui, A.: A review on natural convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 16(7), 5363–5378 (2012)

    Article  Google Scholar 

  44. Seth, G.S., Mishra, M.K., Chamkha, A.J.: Hydromagnetic convective flow of viscoelastic nanofluid with convective boundary condition over an inclined stretching sheet. J. Nanofluids 5(4), 511–521 (2016)

    Article  Google Scholar 

  45. Shit, G.C., Haldar, R., Ghosh, S.K.: Convective heat transfer and MHD viscoelastic nanofluid flow induced by a stretching sheet. Int. J. Appl. Comput. Math. 2(4), 593–608 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389(6649), 360–362 (1997)

    Article  Google Scholar 

  47. Craig, V.S.J., Neto, C., Williams, D.R.M.: Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87(5), 054504 (2001)

    Article  Google Scholar 

  48. Ariel, P.D., Hayat, T., Asghar, S.: The flow of an elastico-viscous fluid past a stretching sheet with partial slip. Acta Mech. 187(1–4), 29–35 (2006)

    Article  MATH  Google Scholar 

  49. Uddin, M.J., Ferdows, M., Bég, O.A.: Group analysis and numerical computation of magneto-convective non-Newtonian nanofluid slip flow from a permeable stretching sheet. Appl. Nanosci. 4(7), 897–910 (2014)

    Article  Google Scholar 

  50. Goyal, M., Bhargava, R.: Boundary layer flow and heat transfer of viscoelastic nanofluids past a stretching sheet with partial slip conditions. Appl. Nanosci. 4(6), 761–767 (2014)

    Article  Google Scholar 

  51. Bataller, R.C.: Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition. Appl. Math. Comput. 206(2), 832–840 (2008)

    MathSciNet  MATH  Google Scholar 

  52. Aziz, A.: A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1064–1068 (2009)

    Article  Google Scholar 

  53. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50(7), 1326–1332 (2011)

    Article  Google Scholar 

  54. Das, K., Acharya, N., Kundu, P.K.: The onset of nanofluid flow past a convectively heated shrinking sheet in presence of heat source/sink: a lie group approach. Appl. Therm. Eng. 103, 38–46 (2016)

    Article  Google Scholar 

  55. Davidson, P.A.: An Introduction to Magnetohydrodynamics, vol. 25. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  56. Magyari, E., Pantokratoras, A.: Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int. Commun. Heat Mass Transf. 38(5), 554–556 (2011)

    Article  Google Scholar 

  57. Reddy, J.N., Gartling, D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, New York (2010)

    MATH  Google Scholar 

  58. Seth, G.S., Sharma, R., Mishra, M.K., Chamkha, A.J.: Analysis of hydromagnetic natural convection radiative flow of a viscoelastic nanofluid over a stretching sheet with Soret and Dufour effects. Eng. Comput. 34(2), 603–628 (2017)

    Article  Google Scholar 

  59. Seth, G., Sharma, R., Mishra, M., Chamkha, A.J.: Analysis of hydromagnetic natural convection radiative flow of a viscoelastic nanofluid over a stretching sheet with Soret and Dufour effects. Eng. Comput. 34, 603–628 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M.K., Seth, G.S. & Sharma, R. Navier’s Slip Effect on Mixed Convection Flow of Non-Newtonian Nanofluid: Buongiorno’s Model with Passive Control Approach. Int. J. Appl. Comput. Math 5, 107 (2019). https://doi.org/10.1007/s40819-019-0686-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0686-z

Keywords

Navigation