Skip to main content
Log in

Worn Surface Morphological Characterization of NaOH-Treated Chopped Abaca Fiber Reinforced Epoxy Composites

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

Wood and metals are replaced by fiber reinforced plastic composites due to many reasons, mainly because their various properties like light weight behavior, high strength to weight ratio, noncorrosive nature and stiffness. Petroleum-based fibers are substituted with bio-based fibers in regard to environmental concerns. Raw fiber displays low-specific strength along with light density, and also the handling and recycling processes are found to be simple. In the area of composites, various advanced materials are produced every day. This paper presents the worn surface morphological characterization of NaOH-treated chopped abaca fiber reinforced epoxy composites. The specimens analyzed after the pin on disc (POD) test exhibited tribo-morphology characterization. The chopped abaca fiber reinforced epoxy composites were fabricated by varying the fiber volume fraction (10 wt%, 15 wt%, 20 wt%, and 25 wt%) using the compression moulding technique. The structure of the worn surfaces and fiber matrix interface were evaluated using a scanning electron microscope (SEM). The outcomes revealed that the presence of abaca fibers in the composites improved the morphological characterization of the neat epoxy. SEM micrographs of 25 wt % of abaca fiber-epoxy composites showed better worn properties when compared with other composite specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data will be available on request.

References

  1. Mahesh D, Kowshigha KR, Raju NV, Aggarwal PK (2019) Characterization of banana fiber-reinforced polypropylene composites. J Indian Acad Wood Sci 1-8.

  2. Rajeshkumar G, Hariharan V, Indran S, Sanjay MR, Siengchin S, Maran JP, Karuppiah P (2020) Influence of Sodium Hydroxide (NaOH) Treatment on Mechanical Properties and Morphological Behaviour of Phoenix sp. Fiber/Epoxy Composites. J Polym Environ 1-10

  3. Siva R, Valarmathi TN, Palanikumar K, Samrot AV (2020) Study on a Novel natural cellulosic fiber from Kigelia africana fruit: characterization and analysis. Carbohydr Polym 116494

  4. Suresh S, Sudhakara D, Vinod B (2020) Investigation on industrial waste eco-friendly natural fiber-reinforced polymer composites. J Bio-Tribo-Corrosion 6(2):1–14

    Article  Google Scholar 

  5. Suresh S, Sudhakara D (2019) Investigation of mechanical and tribological properties of red mud-reinforced particulate polymer composite. J Bio-and Tribo-Corros 5(4):87

    Article  Google Scholar 

  6. Alhijazi M, Zeeshan Q, Safaei B, Asmael M, Qin Z (2020) Recent developments in palm fibers composites: a review. J Polym Environ 1-26

  7. Abhilash SS, Singaravelu DL (2020) Effect of fiber content on mechanical and morphological properties of bamboo fiber-reinforced linear low-density polyethylene processed by rotational molding. Transact Indian Instit Metals 1-6

  8. Hughes M (2012) Defects in natural fibres: their origin, characteristics and implications for natural fibre-reinforced composites J Mater Sci 47(2):599e609

  9. Thakur VK, Singha AS, Thakur MK (2012) Green composites from natural fibers: mechanical and chemical aging properties. Int J Polym Anal Charact 17:401–407

    Article  CAS  Google Scholar 

  10. Bhowmic M, Mukhopadhyay S, Alagirusamy R (2012) Mechanical properties of natural fibre-reinforced composites. Textile Progress 44:85–140

    Article  Google Scholar 

  11. Pickering KL, Aruan Efendy MG, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Composites: Part A 83:98–112

    Article  CAS  Google Scholar 

  12. Arumugam C, Arumugam S, Muthusamy S (2020) Mechanical, thermal and morphological properties of unsaturated polyester/chemically treated woven kenaf fiber/AgNPs@ PVA hybrid nanobiocomposites for automotive applications. J Mater Res Technol

  13. Reddy KO, Maheswari CU, Reddy DJP, Rajulu AV (2009) Thermal properties of Napier grass fibers. Mater Lett 63(27):2390e2392

    Article  Google Scholar 

  14. Gbadeyan OJ, Bright G, Sithole B, Adali S (2020) Physical and morphological properties of snail (Achatina Fulica) shells for beneficiation into biocomposite materials. J Bio-and Tribo-Corros 6(2):35

    Article  Google Scholar 

  15. Klingler A, Bajpai A, Wetzel B (2018) The effect of block copolymer and core-shell rubber hybrid toughening on morphology and fracture of epoxy-based fibre reinforced composites. Eng Fracture Mech 203:81–101

    Article  Google Scholar 

  16. Jagtap S, Rao VS, Ratna D (2012) Preparation of flexible epoxy/clay nanocomposites: effect of preparation method, clay modifier and matrix ductility. J Reinf Plast Compos 32:183–196

    Article  Google Scholar 

  17. Dinesh,T, Kadirvel A, Hariharan P (2020) Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite. Silicon 1-10

  18. Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  19. Rajesh G, Prasad AVR (2013) Effect of fibre loading and successive alkaline treatments on tensile properties of short jute fibre reinforced polypropylene composites. Adv Mater Manuf Charact 3:528–532

    Google Scholar 

  20. Udhayasankar R, Karthikeyan B (2019) Processing of cardanol resin with CSP using compression molding technique. Mater Manuf Processes 34(4):397–406

    Article  CAS  Google Scholar 

  21. Balaji A, Karthikeyan B, Swaminathan J (2019) Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiberreinforcedcardanol green composites. Adv Compos Hybrid Mater 2(1):125–132

    Article  CAS  Google Scholar 

  22. Lai WL, Mariatti M (2008) The properties of woven betel palm (Areca catechu) reinforced polyester composites. J Reinf Plast Compos 27:925–935. https://doi.org/10.1177/0731684407085876

    Article  CAS  Google Scholar 

  23. Vignesh, Nataraj et.al “wear behaviour of coconut shell powder and coir fibre reinforced polyester composites”. IOSR J Mech Civil Eng (IOSR JMCE) e-ISSN: 2278-1684, p-ISSN: 2320-334XPP 53-57.

  24. Prasad PR, Prakash JN, Manjunath LH, Reddy PV (2020) Physical and wear properties of UHMWPE fabric reinforced epoxy composites. Int J Automot Eng 17(1):7577–7586

    Article  CAS  Google Scholar 

  25. Mohanty A, Khan M, Hinrichsen G (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics- polyester amide composites. Compos Part A Appl Sci Manuf 31(2):143150

    Article  Google Scholar 

  26. Bledzki AK, Faruk O, Sperber VE (2006) Cars from biofibers. Macromol. Mater. Eng. 291:283–293

    Google Scholar 

  27. Huang G (2009) Tensile behaviours of the coir fibre and related composites after NaOH treatment. Mater Des 30(9):3931–3934

    Article  Google Scholar 

  28. Ramadevi P, Dhanalakshmi S, Ranganagowda RP, Basavaraju B, Pramod VB, Srinivasa CV (2014) Surface modification of abaca fiber by benzenediazonium chloride treatment and its influence on tensile properties of abaca fiber reinforced polypropylene composites. Cieˆnc Tecnol dos Materiais 26(2):142–149

    Article  Google Scholar 

  29. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63:283–293

    Article  CAS  Google Scholar 

  30. Pothan LA, Thomas S (2003) Polarity parameters and dynamic mechanical behaviour of chemically modified banana fiber reinforced polyester composites. Compos Sci Technol 63:1231–1240

    Article  CAS  Google Scholar 

  31. Pothan LA, Neelakantan NR, Rao B, Thomas S (2004) Stress relaxation behavior of banana fiber-reinforced polyester composites. J Reinf Plast Compos 23:153–166

    Article  CAS  Google Scholar 

  32. Pothan LA, Thomas S (2004) Effect of hybridization and chemical modification on the water-absorption behaviour of banana fiber-reinforced polyester composites. J Appl Polym Sci 91:3856–3865

    Article  CAS  Google Scholar 

  33. Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264. https://doi.org/10.1016/S0266-3538(03)00096-4

    Article  CAS  Google Scholar 

  34. Alamri H, Low IM, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos B 43:2762–2771. https://doi.org/10.1016/j.compositesb.2012.04.037

    Article  CAS  Google Scholar 

  35. Murali Mohan Rao K, Mohana Rao K, Ratna Prasad AV (2010) Fabrication and testing of natural fibre composites: vakka, sisal, bamboo and banana. Mater Des 31:508–513. https://doi.org/10.1016/j.matdes.2009.06.023

    Article  CAS  Google Scholar 

  36. Wang F, Shao J, Keer LM et al (2015) The effect of elementary fibre variability on bamboo fibre strength. Mater Des 75:136–142. https://doi.org/10.1016/j.matdes.2015.03.019

    Article  Google Scholar 

  37. Essabir H, Bensalah MO, Rodrigue D et al (2016) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mech Mater 93:134–144. https://doi.org/10.1016/j.mechmat.2015.10.018

    Article  Google Scholar 

  38. Essabir H, Boujmal R, Bensalah MO et al (2016) Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43. https://doi.org/10.1016/j.mechmat.2016.04.008

    Article  Google Scholar 

  39. Wang F, Li X, Zhang J et al (2016) Micromechanical modelling of the progressive failure in unidirectional composites reinforced with bamboo fibres. Mech Mater 94:180–192. https://doi.org/10.1016/j.mechmat.2015.12.006

    Article  Google Scholar 

  40. Koronis G, Silva A, Fontul M (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B 44:120–127

    Article  CAS  Google Scholar 

  41. Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008) Atmospheric air pressure plasma treatment of lingo cellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol 68:215–227

    Article  CAS  Google Scholar 

  42. Munawar SS, Umemura K, Kawai S (2006) Characterization of the morphological physical, and mechanical properties of seven non wood plant fiber bundles. Jpn Wood Res Soc 53:108–113

    Article  Google Scholar 

  43. Lewin M (2007) Handbook of Fiber Chemistry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  44. Reddy PV, Reddy RS, Rajendra Prasad P, Mohana Krishnudu D, Reddy RM, Rao HR (2020) Evaluation of mechanical and wear performances of natural fiber reinforced epoxy composites. J Nat Fibers 1-14

  45. Balaji A, Purushothaman R, Udhayasankar R, Vijayaraj S, Karthikeyan B (2020) Study on mechanical, thermal and morphological properties of banana fiber-reinforced epoxy composites. J Bio-and Tribo-Corros 6:1–10

    Article  Google Scholar 

  46. Chandramohan D, Murali B, Vasantha-Srinivasan P, Kumar SD (2019) Mechanical, moisture absorption, and abrasion resistance properties of bamboo–jute–glass fiber composites. J Bio-and Tribo-Corros 5(3):66

    Article  Google Scholar 

  47. Kurien RA, Selvaraj DP, Sekar M, Koshy CP (2020). Green composite materials for green technology in the automotive industry. In: IOP Conference Series: Materials Science and Engineering (Vol. 872, No. 1, p. 012064). IOP Publishing.

Download references

Funding

Centre for Engineering Research and Development (CERD), APJ Abdul Kalam Technological University (APJAKTU) (KTU/RESEARCH 2/4068/2019).

Author information

Authors and Affiliations

Authors

Contributions

RAK: investigation, data curation, writing—original draft, DPS: supervision, review & editing, CPK: conceptualization, methodology, validation.

Corresponding author

Correspondence to Rittin Abraham Kurien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Approved by the Ethical Committee of Karunya Institute of Technology and Sciences, Approval Number DC083/2016.

Informed Consent

All the named authors involved in the paper had read it before its submission to publication and confirmed the approval of the complete content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurien, R.A., Selvaraj, D.P. & Koshy, C.P. Worn Surface Morphological Characterization of NaOH-Treated Chopped Abaca Fiber Reinforced Epoxy Composites. J Bio Tribo Corros 7, 31 (2021). https://doi.org/10.1007/s40735-020-00467-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-020-00467-3

Keywords

Navigation