Skip to main content

Advertisement

Log in

Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This research investigated the role of adding bio toughener and reinforcements in the process of making biocomposite for sustainable engineering applications. The primary aim of this study was to develop a biocomposite material using agricultural waste and validate the performance of the composite prepared. The areca fiber was procured from a fiber firm, while the rice husk ash (RHA) biochar and cardanol oil (CO) were prepared by low-temperature pyrolysis and Soxhlet extraction respectively. The areca fiber was surface-treated by alkali-silane through hydrolysis process. The biocomposites were prepared using hand the layup method, followed by curing at elevated temperature. The composites underwent testing as per the American Society for Testing and Materials (ASTM) standards. According to the mechanical properties, the addition of cardinal oil to the resin improved the toughening effect along with areca fiber and biochar. Highest tensile strength of 208 MPa, flexural strength of 236 MPa, and Izod impact toughness of 7.2 J were noted for composite designation NC3. The wear properties of cardanol oil-toughened epoxy resin composites showed a downtrend; however, further addition of biochar particle of 1 vol.% improved the coefficient of friction (COF) and sp. wear rate. Similarly, the fatigue behavior of composite designation NC3 showed the highest life counts of 50,622 for 50% of ultimate tensile stress (UTS) at 3 Hz. The scanning electron microscope (SEM) fractograph images revealed improved adhesion for fiber to resin and the trace for toughness improvement. These high toughness epoxy biocomposites made using agricultural waste-derived reinforcements could be sustainable, cost-effective, and environment-friendly and used as an alternate material in structural, defense, automotive, and drone applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are contained within the article.

References

  1. Hasan KM, Horváth PéterGyörgy, Alpár Tibor (2021) Development of lignocellulosic fiber reinforced cement composite panels using semi-dry technology. Cellulose 28(6):3631–3645

    Article  CAS  Google Scholar 

  2. Prakash VR Arun, Viswanthan R (2019) Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Composites Part A: Appl Sci Manufacturing 118:317–326

    Article  Google Scholar 

  3. Hasan, KM Faridul, Péter György Horváth, Tibor Alpár (2021) Lignocellulosic fiber cement compatibility: a state of the art review. J Natural Fibers 1–26.

  4. Murugan M, Arul V, Jayaseelan D, Jayabalakrishnan T, Maridurai S, Kumar Selva, Ramesh G, Prakash VR (2020) Low velocity impact and mechanical behaviour of shot blasted SiC wire-mesh and silane-treated aloevera/hemp/flax-reinforced SiC whisker modified epoxy resin composites. Silicon 12(8):1847–1856

    Article  CAS  Google Scholar 

  5. Sahoo SK, Mohanty S, Nayak SK (2017) Mechanical, thermal, and interfacial characterization of randomly oriented short sisal fibers reinforced epoxy composite modified with epoxidized soybean oil. J Natural Fibers 14(3):357–367

    Article  CAS  Google Scholar 

  6. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2018) Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: a review. Ind Eng Chem Res 57(8):2711–2726

    Article  CAS  Google Scholar 

  7. Sahoo SK, Mohanty S, Nayak SK (2015) Study of thermal stability and thermo-mechanical behavior of functionalized soybean oil modified toughened epoxy/organo clay nanocomposite. Prog Org Coat 88:263–271

    Article  CAS  Google Scholar 

  8. Dinesh T, Kadirvel A, Hariharan P (2020) Thermo-mechanical and wear behaviour of surface-treated pineapple woven fibre and nano-silica dispersed mahua oil toughened epoxy composite. SILICON 12(12):2911–2920

    Article  CAS  Google Scholar 

  9. Ben Samuel J, JulyesJaisingh S, Sivakumar K, Mayakannan AV, Arunprakash VR (2021) Visco-elastic, thermal, antimicrobial and dielectric behaviour of areca fibre-reinforced nano-silica and neem oil-toughened epoxy resin bio composite. Silicon 13(6):1703–1712

    Article  CAS  Google Scholar 

  10. Rajadurai A (2016) Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite. Appl Surf Sci 384:99–106

    Article  ADS  Google Scholar 

  11. Rajadurai A (2017) Inter laminar shear strength behavior of acid, base and silane treated E-glass fibre epoxy resin composites on drilling process. Defence Technology 13(1):40–46

    Article  MathSciNet  Google Scholar 

  12. Jayabalakrishnan D, Prabhu P, Iqbal Mohamed S, Mugendiran V, Ravi S, Prakash Arun VR (2022) Mechanical, dielectric, and hydrophobicity behavior of coconut shell biochar toughened Caryota urens natural fiber reinforced epoxy composite. POLYMER COMPOSITES 43(1):493–502

    Article  Google Scholar 

  13. Ravi, S., K. Saravanan, D. Jayabalakrishnan, P. Prabhu, Vijayananth Suyamburajan, V. Jayaseelan, A. V. Mayakkannan (2021) Silane grafted nanosilica and aramid fibre-reinforced epoxy composite: dma, fatigue and dynamic loading behaviour. Silicon 1–9.

  14. Xiang Wei, Zhang Xueyang, Chen Jianjun, Zou Weixin, He Feng, Xin Hu, Tsang Daniel CW, Ok Yong Sik, Gao Bin (2020) Biochar technology in wastewater treatment: a critical review. Chemosphere 252:126539

    Article  CAS  PubMed  Google Scholar 

  15. Leng Lijian, Xiong Qin, Yang Lihong, Li Hui, Zhou Yaoyu, Zhang Weijin, Jiang Shaojian, Li Hailong, Huang Huajun (2021) An overview on engineering the surface area and porosity of biochar. Sci Total Environ 763:144204

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Minugu Om Prakash, Gujjala Raghavendra, Shakuntala Ojha, Panchal Manoj M, Chowdary Somaiah (2021) Effect of biomass derived biochar materials on mechanical properties of biochar epoxy composites. Proc IME C: J Mech Eng Sci 235(21):5626–5638

    CAS  Google Scholar 

  17. Thiyagu, T. Thendral, Sai Prasanna Kumar JV, V. Sathiyamoorthy,  Arun Prakash VR (2021) Effect of cashew shell biomass synthesized cardanol oil green compatibilizer on flexibility, barrier, thermal, and wettability of PLA/PBAT biocomposite films. Biomass Conversion and Biorefinery 1–11.

  18. Mohammed Zaheeruddin, Jeelani Shaik, Rangari Vijaya (2021) Low temperature plasma treatment of rice husk derived hybrid silica/carbon biochar using different gas sources. Mater Lett 292:129678

    Article  CAS  Google Scholar 

  19. Yahia R, Owda ME, Abou-Zeid RE, Abdelhai F, Gad ES, Saleh AK, El-Gamil HY (2022) Synthesis and characterization of thermoplastic starch/PVA/cardanol oil composites loaded with in-situ silver nanoparticles. J Appl Polym Sci 139(3):51511

    Article  CAS  Google Scholar 

  20. Arun Prakash, V. R., R. Viswanathan. Fabrication and characterization of silanized echinoidea fillers and kenaf fibre-reinforced Azadirachta-indica blended epoxy multi-hybrid biocomposite

  21. Merizgui Tahar, Hadjadj Abdechafik, MecheriKious VR, Prakash Arun (2020) Effect of temperature and frequency on microwave shielding behaviour of functionalized kenaf fibre-reinforced MWCNTs/iron (III) oxide modified epoxy hybrid composite. Trans Electr Electron Mater 21(4):366–376

    Article  Google Scholar 

  22. Prakash VR Arun, Rajadurai A, Jayaseelan V, Jerome Das S, Murali M, JulyesJaisingh S (2019) Role of silanized magnetic Fe2O3 particle in heat dissipation and microwave shielding behavior of E-glass fibre-reinforced epoxy resin composite. Mater Res Express 6(7):076113

    Article  CAS  ADS  Google Scholar 

  23. Jayabalakrishnan D, Saravanan K, Ravi S, Prabhu P, Maridurai T, Prakash VR (2021) Fabrication and characterization of acrylonitrile butadiene rubber and stitched E-glass fibre tailored Nano-silica epoxy resin composite. SILICON 13(8):2509–2517

    Article  CAS  Google Scholar 

  24. Varghese A Johhny, Ronald B Anand (2021) Low velocity impact, fatigue and Visco-elastic behaviour of carbon/E-glass intra-ply fibre-reinforced Nano-silica toughened epoxy composite. Silicon 13(5):1655–1661

    Article  CAS  Google Scholar 

  25. Hasan KM Faridul, Horváth PéterGyörgy, Kóczán Zsófia, Bak Miklós, Alpár Tibor (2021) Semi-dry technology-mediated coir fiber and Scots pine particle-reinforced sustainable cementitious composite panels. Constr Build Mater 305:124816

    Article  CAS  Google Scholar 

  26. Vincent, V. Antony, C. Kailasanathan, V. K. Shanmuganathan, J. V. Kumar,  V. R. Arun Prakash (2020) Strength characterization of caryota urens fibre and aluminium 2024-T3 foil multi-stacking sequenced SiC-toughened epoxy structural composite. Biomass Conversion Biorefinery 1–11.

  27. Hasan KM, Horváth PéterGyörgy, Kóczán Zsófia, Le Duong Hung Anh, Bak Miklós, Bejó László, Alpár Tibor (2021) Novel insulation panels development from multilayered coir short and long fiber reinforced phenol formaldehyde polymeric biocomposites. J Polym Res 28(12):1–16

    Article  Google Scholar 

  28. Dani, M. S., N. Venkateshwaran (2020) Glass/Brass-270 wire-mesh nanosilica toughened epoxy composite: Mechanical, impact and fatigue behaviour. Silicon 1–11.

  29. Hasan KMF, Horváth PG, Bak M et al (2021) Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose 28:7859–7875. https://doi.org/10.1007/s10570-021-04029-9

    Article  CAS  Google Scholar 

  30. Gheisari Reza, Polycarpou Andreas A (2019) Tribological performance of graphite-filled polyimide and PTFE composites in oil-lubricated three-body abrasive conditions. Wear 436:203044

    Article  Google Scholar 

  31. Zhang Lin, Huiyu Wang, Feng He, Hao Chen, Guoxin Xie, Bin Wei, Jianbin Luo, Bo He, ZhaoPu Wu (2022) Wear in situ self healing polymer composites incorporated with bifunctional microcapsules. Compos B: Eng 232:109566

    Article  CAS  Google Scholar 

  32. Gong Hanjun, Song Yan, Li Guo Liang, Xie Guoxin, Luo Jianbin (2020) A highly tough and ultralow friction resin nanocomposite with crosslinkable polymer-encapsulated nanoparticles. Compos B: Eng 197:108157

    Article  CAS  Google Scholar 

  33. Adeniyi, Adewale George, Sulyman Age Abdulkareem, Joshua O. Ighalo, Mutiu K. Amosa, Ayobami O. Popoola, Samuel Ogunniyi,  Maryam T. Abdulkareem (2021) Usage of Biomass-based Carbon Materials as Lubricant Additive: Effects Rheological Tribological Properties.

  34. Dharmavarapu Pratibha, Reddy MBS (2021) Mechanical, low velocity impact, fatigue and tribology behaviour of Silane grafted aramid fibre and Nano-silica toughened epoxy composite. Silicon 13(6):1741–1750

    Article  CAS  Google Scholar 

  35. Dharmavarapu Pratibha, Reddy MBS (2021) Performance analysis of silane grafted nanosilica and aramid fibre-reinforced epoxy composite in dynamic loading and energy application. Emergent Mater 4(5):1377–1386

    Article  CAS  Google Scholar 

  36. Sivaperumal, R.,  J. Jancirani (2021) Characterization of amino silane modified ramie fibre, OMMT nanoclay-reinforced epoxy resin composite. Silicon 1–10.

  37. Mu, Wen-Long, Qian-Hui Xu, Jing-Xin Na, Heng Wang, Wei Tan,  De-Feng Li (2021) Influence of temperature and humidity on the fatigue behaviour of adhesively bonded CFRP/aluminium alloy joints. The Journal of Adhesion 1–19.

  38. Mahalingam, S., A. Suresh Babu (2022)Characterization of 3-aminopropyltriethoxysilane treated stacked silicate nanoclay and red matta-RHA biosilica woven ramie fibre epoxy composite. Silicon 1–11.

  39. Hasan, KM Faridul, Péter György Horváth, Kovács Zsolt,  Tibor Alpár (2021) Design and fabrication technology in biocomposite manufacturing. In Value-Added Biocomposites,  157–188. CRC Press

  40. Alpár, Tibor, KM Faridul Hasan,  Péter György Horváth (2021) Introduction to biomass and biocomposites. In Value-Added Biocomposites, 1–33. CRC Press

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Collaboration Funding program grant code (NU/RC/SERC/11/4).

Funding

Funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Prakash VR.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshahrani, H., VR, A.P. Mechanical, wear, and fatigue behavior of alkali-silane-treated areca fiber, RHA biochar, and cardanol oil-toughened epoxy biocomposite. Biomass Conv. Bioref. 14, 6609–6620 (2024). https://doi.org/10.1007/s13399-022-02691-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02691-y

Keywords

Navigation