Skip to main content

Advertisement

Log in

Microbial Interactions in Pollution Control Ecosystems

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Microbial interaction determines the performance, stability, and resilience of the microbial communities. Understanding microbial interactions benefits the development of environmental biotechnology. The purpose of this review is to summarize the recent findings of microbial interactions in pollution control ecosystems from aspects of the substrate degradation, energy utilization, electron transfer, and information exchange.

Recent Findings

Cross-feeding of substrates such as vitamins was found to be necessary for the degradation of some trace organic contaminants. Under different conditions, microorganisms can mediate various energy-utilization pathways (e.g., co-metabolism) to grow. Electroactive bacteria and cable bacteria can mediate extracellular electron transfer via conductive pili, c-type cytochrome, or filamentous structure. Quorum sensing plays an important role in the microbial aggregation and functional microbe enrichments. With all these knowledges, it will potentially benefit the development of disruptive environmental biotechnologies.

Summary

This review summarized recent findings of microbial interactions, many of which have huge potentials to advance environmental biotechnologies. Multi-omics methods should be further applied for comprehensively confirming known and unknown microbial processes. The co-occurrence network should be applied to unravel the interlinks among substrate degradation, energy utilization, electron transfer, and information exchange. The proper regulation of microbial interactions in practical application should be further addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotec. 2012;3(4):e201210017. https://doi.org/10.5936/csbj.201210017.

    Article  Google Scholar 

  2. Biebl H, Pfenning N. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol. 1978;117:9–16. https://doi.org/10.1007/BF00689344.

    Article  CAS  Google Scholar 

  3. Stams A, Plugge C. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol. 2009;7:568–77. https://doi.org/10.1038/nrmicro2166.

    Article  CAS  Google Scholar 

  4. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 2013;37(3):384–406. https://doi.org/10.1111/1574-6976.12019.

    Article  CAS  Google Scholar 

  5. Hillesland KL. Evolution on the bright side of life: microorganisms and the evolution of mutualism. Ann NY Acad Sci. 2018;1422(1):88–103. https://doi.org/10.1111/nyas.13515.

    Article  Google Scholar 

  6. Embree M, Liu JK, Al-Bassam MM, Zengler K. Networks of energetic and metabolic interactions define dynamics in microbial communities. Proc Natl Acad Sci USA. 2015;112(50):15450–5. https://doi.org/10.1073/pnas.1506034112.

    Article  CAS  Google Scholar 

  7. Mori M, Ponce-de-León M, Peretó J, Montero F. Metabolic complementation in bacterial communities: necessary conditions and optimality. Front Microbiol. 2016;7:1553. https://doi.org/10.3389/fmicb.2016.01553.

    Article  Google Scholar 

  8. Walker CB, Redding-Johanson AM, Baidoo EE, Rajeev L, He Z, Hendrickson EL, et al. Functional responses of methanogenic archaea to syntrophic growth. ISME J. 2012;6:2045–55. https://doi.org/10.1038/ismej.2012.60.

    Article  CAS  Google Scholar 

  9. Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA. 2014;111(20):E2149–56. https://doi.org/10.1073/pnas.1405641111.

    Article  CAS  Google Scholar 

  10. Walker DJF, Adhikari RY, Holmes DE, Ward JE, Woodard TL, Nevin KP, et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 2017;12(1):48–58. https://doi.org/10.1038/ismej.2017.141.

    Article  CAS  Google Scholar 

  11. Marozava S, Mouttaki H, Müller H, Laban NA, Probst AJ, Meckenstock RU. Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biodegradation. 2018;29(1):23–39. https://doi.org/10.1007/s10532-017-9811-z.

    Article  CAS  Google Scholar 

  12. • Wiechmann A, Ciurus S, Oswald F, Seiler VN, Müller V. It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell. ISME J. 2020;14:1561–70. https://doi.org/10.1038/s41396-020-0627-1This article first describes a novel type of hydrogen cycling that connects an oxidative and reductive metabolic module in one bacterial cell, “intracellular syntrophy.”.

    Article  CAS  Google Scholar 

  13. • Leu AO, Cai C, McIlroy SJ, Southam G, Orphan VJ, Yuan Z, et al. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020;14:1030–41. https://doi.org/10.1038/s41396-020-0590-xThis article describes the coupling of anaerobic methane oxidation and manganese reduction, implying the potential role of Methanoperedenaceae in linking methane and manganese cycling in the environment.

    Article  CAS  Google Scholar 

  14. Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A. Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature. 2015;526:587–90. https://doi.org/10.1038/nature15733.

    Article  CAS  Google Scholar 

  15. Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/anammox experiences - an application survey. Water Res. 2014;55:292–303. https://doi.org/10.1016/j.watres.2014.02.032.

    Article  CAS  Google Scholar 

  16. Zhou J, He Q, Hemme CL, Mukhopadhyay A, Hillesland K, Zhou A, et al. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol. 2011;9(6):452–66. https://doi.org/10.1038/nrmicro2575.

    Article  CAS  Google Scholar 

  17. Speth DR, in’t Zandt MH, Guerrero-Cruz S, Dutilh BE, Jetten MSM. Genomebased microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun. 2016;7:11172. https://doi.org/10.1038/ncomms11172.

    Article  CAS  Google Scholar 

  18. Jung H, Baek G, Lee C. Magnetite-assisted in situ microbial oxidation of H2S to S0 during anaerobic digestion: a new potential for sulfide control. Chem Eng J. 2020;397:124982. https://doi.org/10.1016/j.cej.2020.124982.

    Article  CAS  Google Scholar 

  19. Barret M, Delgadillo-Mirquez L, Trably E, Delgenès N, Braun F, Cea-Barcia G, et al. Anaerobic removal of trace organic contaminants in sewage sludge: 15 years of experience. Pedosphere. 2012;22(4):508–17. https://doi.org/10.1016/S1002-0160(12)60035-6.

    Article  CAS  Google Scholar 

  20. Wang B, Liu W, Zhang Y, Wang A. Intermittent electro field regulated mutualistic interspecies electron transfer away from the electrodes for bioenergy recovery from wastewater. Water Res. 2020;185:116238. https://doi.org/10.1016/j.watres.2020.116238.

    Article  CAS  Google Scholar 

  21. Elías-Arnanz M. Anaerobic bacteria need their vitamin B12 to digest estrogen. Proc Natl Acad Sci USA. 2020;117(4):1833–5. https://doi.org/10.1073/pnas.1921340117.

    Article  CAS  Google Scholar 

  22. • Han P, Yu Y, Zhou L, Tian Z, Li Z, Hou L, et al. Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environ Sci Technol. 2019;53(15):8695–705. https://doi.org/10.1021/acs.est.9b01037This article describes the micropollutant degradation potential of a comammox bacterium to understand the fate of micropollutants in nitrifying environments.

    Article  CAS  Google Scholar 

  23. Koch H, van Kessel MA, Lücker S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol. 2019;103(1):177–89. https://doi.org/10.1007/s00253-018-9486-3.

    Article  CAS  Google Scholar 

  24. Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 2018;12(7):1779–93. https://doi.org/10.1038/s41396-018-0083-3.

    Article  Google Scholar 

  25. Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173. https://doi.org/10.3389/fmicb.2016.00173.

    Article  Google Scholar 

  26. Criddle CS. The kinetics of cometabolism. Biotechnol Bioeng. 1993;41(11):1048–56. https://doi.org/10.1002/bit.260411107.

    Article  CAS  Google Scholar 

  27. Sun Y, Guan Y, Wang D, Liang K, Wu G. Potential roles of acyl homoserine lactone based quorum sensing in sequencing batch nitrifying biofilm reactors with or without the addition of organic carbon. Bioresour Technol. 2018;259:136–45. https://doi.org/10.1016/j.biortech.2018.03.025.

    Article  CAS  Google Scholar 

  28. •• Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46. https://doi.org/10.1038/s41396-020-0607-5This article shows that cable bacteria stimulate sulfate reduction in freshwater sediment through promotion of sulfate availability, providing a mechanism for sulfate recycling.

    Article  CAS  Google Scholar 

  29. Ghattas A-K, Fischer F, Wick A, Ternes TA. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment. Water Res. 2017;116:268–95. https://doi.org/10.1016/j.watres.2017.02.001.

    Article  CAS  Google Scholar 

  30. Lovley DR. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol. 2011;10:101–5. https://doi.org/10.1007/s11157-011-9236-9.

    Article  Google Scholar 

  31. Huang J, Wen Y, Ding N, Xu Y, Zhou Q. Fast start-up and stable performance coupled to sulfate reduction in the nitrobenzene bio-reduction system and its microbial community. Bioresour Technol. 2012;114:201–6. https://doi.org/10.1016/j.biortech.2012.03.050.

    Article  CAS  Google Scholar 

  32. Cornelissen G, Sijm DTHM. An energy budget model for the biodegradation and cometabolism of organic substances. Chemosphere. 1996;33(5):817–30. https://doi.org/10.1016/0045-6535(96)00237-8.

    Article  CAS  Google Scholar 

  33. Jewell KS, Falås P, Wick A, Joss A, Ternes TA. Transformation of diclofenac in hybrid biofilm–activated sludge processes. Water Res. 2016;105:559–67. https://doi.org/10.1016/j.watres.2016.08.002.

    Article  CAS  Google Scholar 

  34. Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol. 2014;80(15):4599–605. https://doi.org/10.1128/AEM.00895-14.

    Article  CAS  Google Scholar 

  35. Rotaru AE, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci. 2014;7(1):408–15. https://doi.org/10.1039/c3ee42189a.

    Article  CAS  Google Scholar 

  36. • Walker DJF, Nevin KP, Holmes DE, Rotaru A-E, Ward JE, Zhu J, et al. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. ISME J. 2020;14:837–46. https://doi.org/10.1038/s41396-019-0575-9This article reports that hydrogen-donating syntrophs Syntrophus aciditrophicus could produce e-pili and can grow via DIET.

    Article  CAS  Google Scholar 

  37. McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature. 2015;526:531–5. https://doi.org/10.1038/nature15512.

    Article  CAS  Google Scholar 

  38. Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol. 2014;48:7536–43. https://doi.org/10.1021/es5016789.

    Article  CAS  Google Scholar 

  39. Yin Q, Wu G. Advances in direct interspecies electron transfer and conductive materials: electron flux, organic degradation and microbial interaction. Biotechnol Adv. 2019;37:107443. https://doi.org/10.1016/j.biotechadv.2019.107443.

    Article  CAS  Google Scholar 

  40. Liu Y, Gu M, Yin Q, Wu G. Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate containing systems. Bioresour Technol. 2019;288:121546. https://doi.org/10.1016/j.biortech.2019.121546.

    Article  CAS  Google Scholar 

  41. Yin Q, Gu M, Wu G. Inhibition mitigation of methanogenesis processes by conductive materials: a critical review. Bioresour Technol. 2020;317:123977. https://doi.org/10.1016/j.biortech.2020.123977.

    Article  CAS  Google Scholar 

  42. Zhuang L, Ma J, Yu Z, Wang Y, Tang J. Magnetite accelerates syntrophic acetate oxidation in methanogenic systems with high ammonia concentrations. Microb Biotechnol. 2018;11(4):710–20. https://doi.org/10.1111/1751-7915.13286.

    Article  CAS  Google Scholar 

  43. Liu Y, Gu M, Yin Q, Du J, Wu G. Thermodynamic analysis of direct interspecies electron transfer in syntrophic methanogenesis based on the optimized energy distribution. Bioresour Technol. 2020;297:122345. https://doi.org/10.1016/j.biortech.2019.122345.

    Article  CAS  Google Scholar 

  44. Gu M, Yin Q, Liu Y, Du J, Wu G. New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis. Bioresour Technol Rep. 2019;7:100225. https://doi.org/10.1016/j.biteb.2019.100225.

    Article  Google Scholar 

  45. Pirbadian S, Chavez MS, El-Naggar MY. Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer. Proc Natl Acad Sci USA. 2020;117(33):20171–9. https://doi.org/10.1073/pnas.2000802117.

    Article  CAS  Google Scholar 

  46. Martineza CM, Alvarezb LH. Application of redox mediators in bioelectrochemical systems. Biotechnol Adv. 2018;36:1412–23. https://doi.org/10.1016/j.biotechadv.2018.05.005.

    Article  CAS  Google Scholar 

  47. Gurumurthy DM, Bharagava RN, Kumar A, Singh B, Ashfaq M, Saratale GD, et al. EPS bound flavins driven mediated electron transfer in thermophilic Geobacillus sp. Microbiol Res. 2019;229:126324. https://doi.org/10.1016/j.micres.2019.126324.

    Article  CAS  Google Scholar 

  48. Dubé CD, Guiot SR. Ethanol-to-methane activity of Geobacter-deprived anaerobic granules enhanced by conductive microparticles. Process Biochem. 2017;63:42–8. https://doi.org/10.1016/j.procbio.2017.07.032.

    Article  CAS  Google Scholar 

  49. • Saunders SH, Tse ECM, Yates MD, Otero FJ, Trammell SA, Stemp EDA, et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell. 2020;182(4):919–32. https://doi.org/10.1016/j.cell.2020.07.006This article describes phenazines mediate efficient extracellular electron transfer through interactions with extracellular DNA in Pseudomonas aeruginosa biofilms.

    Article  CAS  Google Scholar 

  50. Xu S, Jangir Y, El-Naggar MY. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochim Acta. 2016;198:49–55. https://doi.org/10.1016/j.electacta.2016.03.074.

    Article  CAS  Google Scholar 

  51. Edwards MJ, White GF, Norman M, Tome-Fernandez A, Ainsworth E, Shi L, et al. Redox linked flavin sites in extracellular decaheme proteins involved in microbe-mineral electron transfer. Sci Rep. 2015;5:11677. https://doi.org/10.1038/srep11677.

    Article  Google Scholar 

  52. Okamoto A, Hashimoto K, Nealson KH, Nakamura R. Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci USA. 2013;110:7856–61. https://doi.org/10.1073/pnas.1220823110.

    Article  Google Scholar 

  53. Zakaria BS, Dhar BR. Changes in syntrophic microbial communities, EPS matrix, and gene-expression patterns in biofilm anode in response to silver nanoparticles exposure. Sci Total Environ. 2020;734:139395. https://doi.org/10.1016/j.scitotenv.2020.139395.

    Article  CAS  Google Scholar 

  54. Zhang Z, Qu Y, Li S, Feng K, Cai W, Yin H, et al. Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells. Environ Res. 2020;183:109145. https://doi.org/10.1016/j.envres.2020.109145.

    Article  CAS  Google Scholar 

  55. Cai W, Liu W, Zhang Z, Feng K, Ren G, Pu C. Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche. Sci Total Environ. 2019;661:178–86. https://doi.org/10.1016/j.scitotenv.2019.01.131.

    Article  CAS  Google Scholar 

  56. Wang PH, Chen YL, Wei STS, Wu K, Lee TH, Wu TY, et al. Retroconversion of estrogens into androgens by bacteria via a cobalamin-mediated methylation. Proc Natl Acad Sci USA. 2020;117(3):1395–403. https://doi.org/10.1073/pnas.1914380117.

    Article  CAS  Google Scholar 

  57. Hasany M, Mardanpour MM, Yaghmaei S. Biocatalysts in microbial electrolysis cells: a review. Int J Hydrog Energy. 2016;41(3):1477–93. https://doi.org/10.1016/j.ijhydene.2015.10.097.

    Article  CAS  Google Scholar 

  58. Chabert N, Ali OA, Achouak W. All ecosystems potentially host electrogenic bacteria. Bioelectrochemistry. 2015;106:88–96. https://doi.org/10.1016/j.bioelechem.2015.07.004.

    Article  CAS  Google Scholar 

  59. •• Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120. https://doi.org/10.1038/s41467-019-12115-7This article describes the cable bacteria can conduct electrons over centimetre distances via highly conductive fibres embedded in the cell envelope and the charge transfer is electronic rather than ionic.

    Article  CAS  Google Scholar 

  60. Marzocchi U, Trojan D, Larsen S, Meyer RJ, Schramm A, Nielsen LP, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682–90. https://doi.org/10.1038/ismej.2014.19.

    Article  CAS  Google Scholar 

  61. Geerlings NMJ, Karman C, Trashin S, As KS, Kienhuis MVM, Hidalgo-Martinez S, et al. Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci USA. 2020;117(10):5478–85. https://doi.org/10.1073/pnas.1916244117.

    Article  CAS  Google Scholar 

  62. Müller M, Marozava S, Probst AJ, Meckenstock RU. Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME J. 2020;14:623–34. https://doi.org/10.1038/s41396-019-0554-1.

    Article  CAS  Google Scholar 

  63. Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N. Cable bacteria reduce methane emissions from rice-vegetated soils. Nat Commun. 2020;11:1878. https://doi.org/10.1038/s41467-020-15812-w.

    Article  CAS  Google Scholar 

  64. Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A. Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Water Res. 2020;173:115520. https://doi.org/10.1016/j.watres.2020.115520.

    Article  CAS  Google Scholar 

  65. Ye Q, Zhang Z, Huang Y, Fang T, Cui Q, He C, et al. Enhancing electron transfer by magnetite during phenanthrene anaerobic methanogenic degradation. Int Biodeterior Biodegrad. 2018;129:109–16. https://doi.org/10.1016/j.ibiod.2018.01.012.

    Article  CAS  Google Scholar 

  66. Yu L, Yuan Y, Tang J, Wang Y, Zhou S. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep. 2015;5:16221. https://doi.org/10.1038/srep16221.

    Article  CAS  Google Scholar 

  67. Cruz-Zavala AS, Pat-Espadas AM, Rangel-Mendez JR, Chazaro-Ruiz LF, Ascacio-Valdes JA, Aguilar CN, et al. Immobilization of metal–humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors. Bioresour Technol. 2016;207:39–45. https://doi.org/10.1016/j.biortech.2016.01.125.

    Article  CAS  Google Scholar 

  68. Liu C, Xu X, Fan J. Accelerated anaerobic dechlorination of DDT in slurry with Hydragric Acrisols using citric acid and anthraquinone-2,6-disulfonate (AQDS). J Environ Sci. 2015;38:87–94. https://doi.org/10.1016/j.jes.2015.05.005.

    Article  CAS  Google Scholar 

  69. Lefevre E, Redfern L, Cooper EM, Stapleton HM, Gunsch CK. Acetate promotes microbial reductive debromination of tetrabromobisphenol A during the startup phase of anaerobic wastewater sludge bioreactors. Sci Total Environ. 2019;656:959–68. https://doi.org/10.1016/j.scitotenv.2018.11.403.

    Article  CAS  Google Scholar 

  70. Ma H, Wang X, Zhang Y, Hu H, Ren H, Geng J, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresour Technol. 2018;247:116–24. https://doi.org/10.1016/j.biortech.2017.09.043.

    Article  CAS  Google Scholar 

  71. Wei W, Zhang Y, Komorek R, Plymale A, Yu R, Wang B, et al. Characterization of syntrophic Geobacter communities using ToF-SIMS. Biointerphases. 2017;12(5):05G601. https://doi.org/10.1116/1.4986832.

    Article  Google Scholar 

  72. Zhang G, Zhang F, Ding G, Li J, Guo X, Zhu J, et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME J. 2012;6(7):1336–44. https://doi.org/10.1038/ismej.2011.203.

    Article  CAS  Google Scholar 

  73. Sun Y, Guan Y, Zeng D, He K, Wu G. Metagenomics-based interpretation of AHLs-mediated quorum sensing in Anammox biofilm reactors for low-strength wastewater treatment. Chem Eng J. 2018;344:42–52. https://doi.org/10.1016/j.cej.2018.03.047.

    Article  CAS  Google Scholar 

  74. • Tommonaro G, Abbamondi GR, Iodice C, Tait K, De Rosa S. Diketopiperazines produced by the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microb Ecol. 2012;63:490–5. https://doi.org/10.1007/s00248-011-9980-yThis study first describes that archaea might be able to interact with AHL-producing bacteria within mixed communities.

    Article  CAS  Google Scholar 

  75. Li L, Zheng M, Ma H, Gong S, Ai G, Liu X, et al. Significant performance enhancement of a UASB reactor by using acyl homoserine lactones to facilitate the long filaments of Methanosaeta harundinacea 6Ac. Appl Microbiol Biotechnol. 2015;99(15):6471–80. https://doi.org/10.1007/s00253-015-6478-4.

    Article  CAS  Google Scholar 

  76. Lv L, Li W, Zheng Z, Li D, Zhang N. Exogenous acyl-homoserine lactones adjust community structures of bacteria and methanogens to ameliorate the performance of anaerobic granular sludge. J Hazard Mater. 2018;354:72–80. https://doi.org/10.1016/j.jhazmat.2018.04.075.

    Article  CAS  Google Scholar 

  77. Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R, Burrus V. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J Bacteriol. 2015;197(5):819–32. https://doi.org/10.1128/JB.02340-14.

    Article  CAS  Google Scholar 

  78. Sun Y, He K, Yin Q, Echigo S, Wu G, Guan Y. Determination of quorum-sensing signal substances in water and solid phases of activated sludge systems using liquid chromatography–mass spectrometry. J Environ Sci. 2018;69:85–94. https://doi.org/10.1016/j.jes.2017.04.017.

    Article  Google Scholar 

  79. Du Q, Mu Q, Wu G. Metagenomic and bioanalytical insights into quorum sensing of methanogens in anaerobic digestion systems with or without the addition of conductive filter. Sci Total Environ. 2021;763:144509. https://doi.org/10.1016/j.scitotenv.2020.144509.

    Article  CAS  Google Scholar 

  80. Li FH, Tang Q, Fan YY, Li Y, Li J, Wu JH, et al. Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis. Proc Natl Acad Sci USA. 2020;117(37):23001–10. https://doi.org/10.1073/pnas.2006534117.

    Article  CAS  Google Scholar 

  81. Lovley DR. Happy together: microbial communities that hook up to swap electrons. ISME J. 2017;11:327–36. https://doi.org/10.1038/ismej.2016.136.

    Article  CAS  Google Scholar 

  82. Farag IF, Biddle JF, Zhao R, Martino AJ, House CH. León-Zayas Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. ISME J. 2020;14:1345–58. https://doi.org/10.1038/s41396-020-0615-5.

    Article  CAS  Google Scholar 

  83. Bell E, Lamminmäki T, Lneberg J, Andersson AF, Qian C, Xiong W, et al. Active sulfur cycling in the terrestrial deep subsurface. ISME J. 2020;14:1260–72. https://doi.org/10.1038/s41396-020-0602-x.

    Article  CAS  Google Scholar 

  84. van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low μm-range. ISME J. 2020;15:1–14. https://doi.org/10.1038/s41396-020-00806-9.

    Article  CAS  Google Scholar 

  85. Islam MA, Karim A, Mishra P, Dubowski JJ, Yousuf A, Sarmin S. Microbial synergistic interactions enhanced power generation in co-culture driven microbial fuel cell. Sci Total Environ. 2020;738:140138. https://doi.org/10.1016/j.scitotenv.2020.140138.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Galway University Foundation, and the Shenzhen Science and Technology Innovation Committee (grant number JCYJ20170817161106801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxue Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Feng, Z., Hu, Y. et al. Microbial Interactions in Pollution Control Ecosystems. Curr Pollution Rep 7, 104–114 (2021). https://doi.org/10.1007/s40726-021-00181-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-021-00181-9

Keywords

Navigation