Skip to main content

Microbial Omics: Role in Ecological Studies and Environmental Control Measures

  • Chapter
  • First Online:
Environmental Biotechnology Vol. 2

Abstract

Background/issues: Core microbial communities persisting in different environments play important roles in major biotechnological processes such as wastewater treatment, pollutant degradation, antibiotic resistance, biogeochemical cycles and most of the other environmental control mechanisms. Microbial integrated omics that involves metagenomics, metatranscriptomics and metaproteomics are now providing better insight into the relationships between this core microbial community dynamics and their functions. Thus, integrated-omics is acquiring huge attention within the scientific community for enhanced understanding of the novel microbial genetic structure and functionality with the point of view for environmental monitoring and control.

Major advances: Here, we review the current advancements in the -omics technologies and its impact on the microbial ecology studies that aim for environmental control. Specifically, the review focuses on the research highlights involving the characterization of microbial communities and metabolic pathways for hydrocarbon degradation and wastewater treatment. Overall, the insights will provide us the knowledge regarding the scope, limitations and optimization strategies to be developed for better applications of microbial -omics approach in betterment of environmental processes and in bioengineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abram F, Enright AM, Reilly J, Botting CH, Collins G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110:1550–1560. https://doi.org/10.1111/j.1365-2672.2011.05011.x

    Article  CAS  PubMed  Google Scholar 

  • Adhikari PL, Maiti K, Overton EB (2015) Vertical fluxes of polycyclic aromatic hydrocarbons in the northern Gulf of Mexico. Mar Chem 168:60–68

    Article  CAS  Google Scholar 

  • Al-Turki AI (2009) Microbial polycyclic aromatic hydrocarbons degradation in soil. Res J Environ Toxicol 3(1):1–8

    Article  CAS  Google Scholar 

  • Ambrosoli R, Petruzzelli L, Luis Minati J, Ajmone MF (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60(9):1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Andersson JT, Achten C (2015) Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl Aromat Comp 35:330–354

    Article  CAS  Google Scholar 

  • Baek SO, Field RA, Goldstone ME et al (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Poll 60:279–300

    Article  CAS  Google Scholar 

  • Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pol 20:4311–4326

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot 80:723–736

    Article  CAS  Google Scholar 

  • Banitz T, Johst K, Wick LY, Schamfuß S, Harms H, Frank K (2013) Highways versus pipelines: contributions of two fungal transport mechanisms to efficient bioremediation. Environ Microbiol Rep 5(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P (1998) PAHs in Arcachon Bay, France: origin and biomonitoring with caged organisms. Mar Pollut Bull 36:577–586

    Article  CAS  Google Scholar 

  • Boitard L, Cottinet D, Bremond N, Baudry J, Bibette J (2015) Growing microbes in millifluidic droplets. Eng Life Sci 15:318–326

    Article  CAS  Google Scholar 

  • Bomar L, Maltz M, Colston S, Graf J (2011) Directed culturing of microorganisms using metatranscriptomics. mBio 2:e00012-00011. https://doi.org/10.1128/mBio.00012-11

  • Bouchez T, Patureau D, Delgenes JP, Moletta R (2009) Successful bacterial incorporation into activated sludge flocs using alginate. Bioresour Technol 100:1031–1032. https://doi.org/10.1016/j.biortech.2008.07.028

  • Burns WA, Mankiewicz PJ, Bench AE et al (1997) A principal-component and least-squares method for allocating polycyclic aromatic hydrocarbons in sediment to multiple sources. Environ Toxicol Chem 16:1119–1131

    Article  CAS  Google Scholar 

  • Cerniglia C (1993) Biodegradation of polycyclic aromatic hydrocarbons. In: Rosenberg E (ed) Microorganisms to combat pollution. Springer, Dordrecht, pp 227–244

    Google Scholar 

  • Dachs J, Bayona JM, Raoux C et al (1997) Spatial, vertical distribution and budget of polycyclic aromatic hydrocarbons in the western Mediterranean seawater. Environ Sci Technol 31:682–688

    Article  CAS  Google Scholar 

  • Dean BJ (1985) Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutat Res 154:153–181

    Article  CAS  PubMed  Google Scholar 

  • Dewi Puspita I, Kamagata Y, Tanaka M, Asano K, Nakatsu CH (2012) Are uncultivated bacteria really uncultivable? Microb Environ 27:356–366

    Article  Google Scholar 

  • Duarte M, Nielsen A, Camarinha-Silva A, Vilchez-Vargas R, Bruls T, Wos-Oxley ML, Jauregui R, Pieper DH (2017) Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Environ Micro 19:2992–3011

    Article  CAS  Google Scholar 

  • Duque AF, Bessa VS, Carvalho MF, de Kreuk MK, van Loosdrecht MC, Castro PM (2011) 2-fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor. Water Res 45:6745–6752. https://doi.org/10.1016/j.watres.2011.10.033

    Article  CAS  PubMed  Google Scholar 

  • Duran R, Cravo-Laurea C (2016) Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 40:814–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erdogan MF (2003) Thiocyanate overload and thyroid disease. BioFactors 19(3−4):107−111

    Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Fang HHP, Zhang T (eds) (2015) Anaerobic biotechnology: environmental protection and resource recovery. Imperial College Press, London

    Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (1997) Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microb Biotech 15:93–120

    Article  CAS  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson G, Shi Y, Coleman M, Tyson GW, Coleman ML, Schuster S, Chrisholm SW, Delong EF et al (2008) Microbial community gene expression in ocean surfacewaters. Proc Natl Acad Sci 105:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuno S, Pazolt K, Rabe C, Neu TR, Harms H, Wick LY (2009) Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water unsaturated systems. Environ Microbiol 12(6):1391–1398

    PubMed  Google Scholar 

  • Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105(2):289–305

    Article  PubMed  Google Scholar 

  • Gilbert J, Li L-L, Taghavi S, McCorkle SM, Tringe S, van der Lelie D (2012) Bioprospecting metagenomics for new glycoside hydrolases. Meth Molec Biol 908:141–151

    Google Scholar 

  • Gogou A, Bouloubassi I, Stephanou EG (2000) Marine organic geochemistry of the eastern Mediterranean: 1. Aliphatic and polyaromatic hydrocarbons in Cretan Sea surficial sediments. Mar Chem 68:265–282

    Article  CAS  Google Scholar 

  • Guo Z, Lin T, Zhang G et al (2007) The sedimentary fluxes of polycyclic aromatic hydrocarbons in the Yangtze River estuary coastal sea for the past century. Sci Total Environ 386:33–41

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  CAS  PubMed  Google Scholar 

  • He S, Kunin V, Haynes M, Martin HG, Ivanova N, Rohwer F, Hugenholtz P, McMahon KD (2010) Metatranscriptomic array analysis of ‘Candidatus Accumulibacter phosphatis’ – enriched enhanced biological phosphorus removal sludge. Environ Microbiol 12:1205–1217. https://doi.org/10.1111/j.1462-2920.2010.02163.x

    Article  CAS  PubMed  Google Scholar 

  • Henner P, Schiavon M, Morel J-L et al (1997) Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Analusis 25:M56–M59

    CAS  Google Scholar 

  • Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. https://doi.org/10.1038/ismej.2011.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467

    Article  CAS  PubMed  Google Scholar 

  • Hesselman MC, Odoni DI, Ryback BM, de Groot S, van Heck RGA, Keijsers J, Kolkman P, Nieuwenhuijse D, van Nuland YM, Sebus E et al (2012) A multi-platform flow device for microbial (co-) cultivation and microscopic analysis. PLoS One 7:e36982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey WJ, Chen S, Zhao J (2012) The phn island: a new genomic Island encoding catabolism of polynuclear aromatic hydrocarbons. Front Microbiol 3:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Hites RA, Laflamme RE, Farrington JW (1977) Sedimentary polycyclic aromatic hydrocarbons: the historical record. Science 198:829–831

    Article  CAS  PubMed  Google Scholar 

  • Hites RA, Laflamme RE, Windsor JG (1980) Polycyclic aromatic hydrocarbons in marine/aquatic sediments: their ubiquity. In: Petrakis L, Weiss FT (eds) Petroleum in the marine environment, vol 185. American Chemical Society, Washington, DC, pp 289–311

    Chapter  Google Scholar 

  • Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA (2012) Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics 13(1):327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain A, Ogawa T, Saito M, Sekine T, Nameki M, Matsushita Y, Hayashi T, Katayama Y (2013) Cloning and expression of a gene encoding a novel thermostable thiocyanate degrading enzyme from a mesophilic Alphaproteobacteria strain THI201. Microbiology 159:2294–2302

    Article  CAS  PubMed  Google Scholar 

  • Hylland K (2006) Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Env Heal A 69:109–123

    Article  CAS  Google Scholar 

  • Ikeda-Ohtsubo W, Miyahara M, Kim SW, Yamada T, Matsuoka M, Watanabe A, Fushinobu S, Wakagi T, Shoun H, Miyauchi K, Endo G (2013) Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2. J Biosci Bioeng 115:37–42. https://doi.org/10.1016/j.jbiosc.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • Judd A, Hovland M (2007) Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama Y, Narahara Y, Inoue Y, Amano F, Kanagawa T, Kuraishi HA (1992) Thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J Biol Chem 267(13):9170–9175

    CAS  PubMed  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2008) Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Factories 7:27. https://doi.org/10.1186/1475-2879-7-27

    Article  Google Scholar 

  • Kohlmeier S, Smits TH, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646

    Article  CAS  PubMed  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230

    Article  PubMed  Google Scholar 

  • Lang YH, Yang X, Wang H et al (2013) Diagnostic ratios and positive matrix factorization to identify potential sources of PAHS in sediments of the Rizhao offshore, China. Polycycl Aromat Comp 33:161–172

    Article  CAS  Google Scholar 

  • Launen LA, Dutta J, Turpeinen R, Eastep ME, Dorn R, Buggs VH, Leonard JW, Haggblom M (2008) Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor. Biodegradation 19(3):347–363

    Article  CAS  PubMed  Google Scholar 

  • Leis B, Angelov A, Liebl W (2013) Screening and expression of genes from metagenomes. Adv Appl Microbiol 83:1–68

    Article  CAS  PubMed  Google Scholar 

  • Li P, Xue R, Wang Y et al (2015) Influence of anthropogenic activities on PAHs in sediments in a significant gulf of low-latitude developing regions, the Beibu Gulf, South China Sea: distribution, sources, inventory and probability risk. Mar Pollut Bull 90:218–226

    Article  CAS  PubMed  Google Scholar 

  • Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment – a review. Environ Forensic 6:109–131

    Article  CAS  Google Scholar 

  • Liu L-Y, Wang J-Z, Wei G-L et al (2012) Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: implications for anthropogenic influences on coastal marine environment. Environ Pollut 167:155–162

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2003) Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol 1(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Lu X-Y, Zhang T, Fang H-P (2011) Bacteria-mediated PAH degradation in soil and sediment. Appl Microbiol Biot 89:1357–1371

    Article  CAS  Google Scholar 

  • Ma J, Zai G (2012) Microbial bioremediation in omics era: opportunities and challenges. J Bioremed Biodegr 3:9. https://doi.org/10.4172/2155-6199.1000e120

    Article  CAS  Google Scholar 

  • Mahmoudi N, Porter TM, Zimmerman AR et al (2013) Rapid degradation of deepwater horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. Environ Sci Technol 47:13303–13312

    Article  CAS  PubMed  Google Scholar 

  • Mai BX, Fu JM, Sheng GY et al (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut 117:457–474

    Article  CAS  PubMed  Google Scholar 

  • Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56:867–878

    Article  CAS  PubMed  Google Scholar 

  • Marchesi JR, Ravel J (2015) The vocabulary of microbiome research: a proposal. Microbiome 3:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269. https://doi.org/10.1038/nbt1247

    Article  CAS  Google Scholar 

  • Mastrangelo G, Fadda E, Marzia V (1996) Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104:1166–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meckenstock RU, Mouttaki H (2011) Anaerobic degradation of nonsubstituted aromatic hydrocarbons. Curr Opin Biotech 22:406–414

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C et al (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J Contam Hydrol 75:215–255

    Article  CAS  PubMed  Google Scholar 

  • Miller EC, Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47:2327–2345

    Article  CAS  PubMed  Google Scholar 

  • Muratova A, Hubner T, Tischer S, Turkovskaya O, Moder M, Kuschk P (2003) Plant-rhizosphere-microflora association during phytoremediation of PAH-contaminated soil. Int J Phytoremediation 5(2):137–151

    Article  CAS  PubMed  Google Scholar 

  • Narihiro T, Kamagata Y (2013) Cultivating yet-to-be cultivated microbes: the challenge continues. Microbes Environ 28:163–165

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazir A (2016) Review on metagenomics and its applications. Imp J Interdiscip Res 2:277–286

    Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71(2):169–185

    Article  CAS  PubMed  Google Scholar 

  • Neff JM (2002) Polycyclic aromatic hydrocarbons in the ocean. In: Neff JM (ed) Bioaccumulation in marine organisms. Elsevier, Oxford, pp 241–318

    Chapter  Google Scholar 

  • Nichols D (2007) Cultivation gives context to the microbial ecologist. FEMS Microbiol Ecol 60:351–357

    Article  CAS  PubMed  Google Scholar 

  • Niu SY, Yang J, McDermaid A, Zhao J, Kang Y, Ma Q (2017) Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes. Brief Bioinform. https://doi.org/10.1093/bib/bbx051

  • Nobu MK, Narihiro T, Rinke C, Kamagata Y, Tringe SG, Woyke T, Liu W-T (2015) Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. ISME J 9(8):1710–1722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ounit R, Wanamaker S, Close TJ, Lonardi S (2015) CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics 16:236. https://doi.org/10.1186/s12864-015-1419-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J, Kerner A, Burns MA, Lin XN (2011) Micro droplet enabled highly parallel co-cultivation of microbial communities. PLoS One 6:e17019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    Google Scholar 

  • Plugge CM, Zhang W, Scholten JC, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81. https://doi.org/10.3389/fmicb.2011.00081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozdnyakova NN (2012) Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol Res Int 2012:1–20

    Article  CAS  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signalling for rhizosphere microbiome engineering. Front Plant Sci 6:1–11

    Article  Google Scholar 

  • Rabus R, Boll M, Heider J et al (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microb Biotech 26:5–28

    Article  CAS  Google Scholar 

  • Rodríguez E, García-Encina PA, Stams AJM, Maphosa F, Sousa DZ (2015) Meta-omics approaches to understand and improve wastewater treatment systems. Rev Environ Sci Biotechnol 14:385–406

    Article  CAS  Google Scholar 

  • Schamfuß S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47(13):6908–6915

    Article  PubMed  CAS  Google Scholar 

  • Seo J-S, Keum Y-S, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Gao W, Wang J, Chao SH, Zhang W, Meldrum DR (2014) Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices. Crit Rev Biotechnol 8551:1–13

    Google Scholar 

  • Singleton DR, Ramirez LG, Aitken MD (2009) Characterization of a polycyclic aromatic hydrocarbon degradation gene cluster in a phenanthrene-degrading Acidovorax strain. Appl Environ Microbiol 75:2613–2620. https://doi.org/10.1128/AEM.01955-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic/Elsevier, London

    Google Scholar 

  • Staley JT (1985) Measurement of in situ activities of non photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Stratford J, Dias AE, Knowles CJ (1994) The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium: the degradative pathway involves formation of ammonia and tetrathionate. Microbiology 140:2657–2662

    Article  CAS  PubMed  Google Scholar 

  • Tobiszewski M, NamieÅ›nik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  PubMed  Google Scholar 

  • Turner JT (2015) Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr 130:205–248

    Article  Google Scholar 

  • Tyson GW, Lo I, Baker BJ, Allen EE, Hugenholtz P, Banfield JF (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324. https://doi.org/10.1128/AEM.71.10.6319-6324.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US-EPA (1984) List of the sixteen PAHs with highest carcinogenic effect. IEA Coal Research, London

    Google Scholar 

  • van Buuren C, Makhotla N, Olivier JW (2011) The ASTER process: technology development through to piloting, demonstration, and commercialization. In: Proceedings of the ALTA nickel-cobalt-copper, uranium and gold conference

    Google Scholar 

  • Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotech 33:95–102

    Article  CAS  PubMed  Google Scholar 

  • Viñas L, Angeles Franco M, Antonio Soriano J et al (2010) Sources and distribution of polycyclic aromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessment of spatial and temporal trends. Environ Pollut 158:1551–1560

    Article  PubMed  CAS  Google Scholar 

  • Wade TL, Sweet ST, Klein AG (2008) Assessment of sediment contamination in Casco Bay, Maine, USA. Environ Pollut 152:505–521

    Article  CAS  PubMed  Google Scholar 

  • Wang J-Z, Guan Y-F, Ni H-G et al (2007) Polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta (China): concentrations, fluxes, and fate. Environ Sci Technol 41:5614–5619

    Article  CAS  PubMed  Google Scholar 

  • White KL (1986) An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Environ Carcin R 4:163–202

    Google Scholar 

  • Wilmes P, Heintz-Buschart A, Bond PL (2015) A decade of metaproteomics: where we stand and what the future holds. Proteomics 15:3409–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, Murrell JC, Borodina EA (1998) Novel pink pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol 169(2):148–158

    Article  CAS  PubMed  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yadav TC, Pal RR, Shastri S et al (2015) Comparative metagenomics demonstrating different degradative capacity of activated biomass treating hydrocarbon contaminated wastewater. Bioresour Technol 188:24–32. https://doi.org/10.1016/j.biortech.2015.01.141

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen N, Chen T (2017) Inference of environmental factor-microbe and microbe-microbe associations from metagenomic data using a hierarchical Bayesian statistical model. Cell Syst 4:129–137

    Article  CAS  PubMed  Google Scholar 

  • Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzeby J, Amann R, Rossello-Mora R (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7. https://doi.org/10.1371/journal.pone.0038183

  • Yu W, Liu R, Wang J et al (2015) Source apportionment of PAHs in surface sediments using positive matrix factorization combined with GIS for the estuarine area of the Yangtze River, China. Chemosphere 134:263–271

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Zhang F, Zhang T-C (2013) Sedimentary records of PAHs in a sediment core from tidal flat of Haizhou Bay, China. Sci Total Environ 450–451:280–288

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Pereira e Silva MC, Chaib De Mares M, van Elsas JD (2014) The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 89(3):516–526

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Shen Y, Guo J-S et al (2015) Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics. Sci Rep 5:12041. https://doi.org/10.1038/srep12041

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam M. Nathani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nathani, N.M., Rajyaguru, R.H., Prashanth, P.N.P., Mootapally, C., Dave, B.P. (2020). Microbial Omics: Role in Ecological Studies and Environmental Control Measures. In: Gothandam, K., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Environmental Biotechnology Vol. 2. Environmental Chemistry for a Sustainable World, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-38196-7_8

Download citation

Publish with us

Policies and ethics