Skip to main content

Advertisement

Log in

Hydrogeologic Behavior of a Complex and Mature Karst Aquifer System under Drought Condition

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

This paper aims, using classic hydrogeologic techniques, Time Series Analysis, Principal Component Analysis, Standardized Precipitation Index, and MRC methods to better understand the hydrogeological, and hydraulic characteristics of a mature karst aquifer system, and to analyze its behavior under drought conditions. The study area is the karst aquifer system of Aggitis (AAS), Northern East Greece, characterized by a mountainous terrain consisting of highly fissured and karstified Falakro marbles of Mesozoic age. AAS catchment extends 63.4 km2 and exhibits a duality of conduit and/or diffuse flow model. AAS is drained by the permanent large Maaras spring with a mean annual value of 4.656 m3/s. The dominant chemical type is Ca-HCO3. PCA and hydrochemical analysis were effectively used in combination to interpret the main hydrogeochemical mechanisms controlling karst water quality. A combined methodology provides a useful and effective tool for assessing the characteristic behavior of karst springs under drought conditions. It enables also, to gain insight into the prevailing processes in a karst aquifer system. The statistical analysis of hydrological data revealed the karst system is mainly recharged by diffuse infiltration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Groundwater 51(4):641–650. https://doi.org/10.1111/j.1745-6584.2012.01003.x

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (2008) Toxicological profile for aluminum: Atlanta, Ga., U.S. Department of Health and Human Services, public health service, September, 310 p. In: plus 4 Appendices

    Google Scholar 

  • Al-Charideh A (2012) Recharge rate estimation in the mountain karst aquifer system of Figeh spring, Syria. Environ Earth Sci 65:1169–1178

    Article  Google Scholar 

  • Angelini P (1997) Correlation and spectral analysis of two hydrogeological systems in Central Italy. Hydrol Sci J 42:425–438

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160. https://doi.org/10.1007/s10040-004-0402-9

    Article  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual treated soil. J Environ Quality 34:49–63

    Article  Google Scholar 

  • Boy-Roura M, Menció A, Mas-Pla J (2013) Temporal analysis of spring water data to assess nitrate inputs to groundwater in an agricultural area (Osona, NE Spain). Sci Total Environ:452–453

  • Bradley DC, Stillings LL, Jaskula BW, Munk, LeeAnn, McCauley AD (2017) Lithium. In: Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds), Critical mineral resources of the United States—economic and environmental geology and prospects for future supply: U.S. Geological Survey professional paper 1802, Chapter K, pp. K1–K21, doi: https://doi.org/10.3133/pp1802K

  • Brahana JV, Thrailkill J, Freeman T, Ward WC (1988) Carbonate rocks. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology. The geology of North America O-2. The Geological Society of America, Boulder, Colorado, pp 333–352

    Google Scholar 

  • Brenot A, Baran N, Petelet-Giraud E, Négre P (2008) Interaction between different water bodies in a small catchment in the Paris basin (Brévilles, France): tracing of multiple Sr sources through Sr isotopes coupled with mg/Sr and ca/Sr ratios. Appl Geochem 23(1):58–75. https://doi.org/10.1016/j.apgeochem.2007.09.006

    Article  Google Scholar 

  • Brown AL, Martin JB, Screaton EJ, Ezella JE, Spellman P, Gulley J (2014) Bank storage in karst aquifers: the impact of temporary intrusion of river water on carbonate dissolution and trace metal mobility. Chem Geol 385:56–69. https://doi.org/10.1016/j.chemgeo.2014.06.015

    Article  Google Scholar 

  • Chagipanagis I (1991) Geological structure of the Falakro mountain area. Thesis (PhD), National Technical University of Athens, (in Greek)

  • Council Directive 98/83/EC (1998) Quality of water intended for human consumption. November:3

  • Cowell DP, Ford DC (1983) Karst hydrology of the Bruce peninsula, Ontario, Canada. J Hydrol 61:163–168

    Article  Google Scholar 

  • Delbart C, Valdes D, Barbecot F, Tognelli A, Richon P, Couchoux L (2014) Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method. J Hydrol 511:580–588

    Article  Google Scholar 

  • Dimadi A (1988) Comportement hydrogéologique des marbres de la bordure du Rhodope. In: Hydrogéologie du secteur sud-ouest du massif du Falakro, Macedoine Orientale, Grèce. Thesis (PhD). Universités De Grenoble I

  • Doğan U (2003) Sariot Polje, central Taurus (Turkey): a border Polje developed at the contact of karstic and non-karstic lithologies. Cave and Karst Science 30(2):117–124

    Google Scholar 

  • Edwards DC, McKee TB (1997) Characteristics of 20th century drought in the United States at multiple time scales. Climatology Report 97–2, Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

  • EPA document (1999) Background report on fertilizer use, contaminants and regulation. EPA 747-R-98-003. January, 1999

  • European Union (2010) Water scarcity and drought in the European Union. Available from: http://ec.europa.eu/environment/pubs/pdf/factsheets/water_scarcity.pdf. Accesssed 8 June 2016

  • Fiorentino CE, Paoloni JD, Sequeira ME, Arosteguy P (2007) The presence of vanadium in groundwater of southeastern extreme the pampean region Argentina: Relationship with other chemical elements. J Contam Hydrol 93:122–129

    Article  Google Scholar 

  • Fiorillo F (2009) Spring hydrographs as indicators of droughts in a karst environment. J Hydrol 373(3–4):290–301

    Article  Google Scholar 

  • Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis (Campania, southern Italy). Hydrogeol J 18:1881–1895

    Article  Google Scholar 

  • Fiorillo F, Guadagno FM (2012) Long karst spring discharge time series and droughts occurrence in southern Italy. Environ Earth Sci 65(8):2273–2283

    Article  Google Scholar 

  • Flemming L, Postma D (1997) Nickel mobilization in a groundwater well field: release by pyrite oxidation and desorption from manganese oxides. Environ Sci Technol 31:2589–2595

    Article  Google Scholar 

  • Foley NK, Jaskula BW, Kimball BE, Schulte RF (2017a) Gallium. In: Schulz KJ, DeYoung JH Jr, Seal RR, II, Bradley DC, (eds), Critical mineral resources of the United States - Economic and environmental geology and prospects for future supply: US Geolog Survey Professional Paper 1802, Chapter H, pp. H1–H35, doi: https://doi.org/10.3133/pp1802H

  • Foley NK, Jaskula BW, Piatak NM, Schulte RF (2017b) Beryllium. In: Schulz KJ, DeYoung JH Jr, Seal RR, II, Bradley DC, (eds), Critical mineral resources of the United States - Economic and environmental geology and prospects for future supply: US Geolog Survey Professional Paper 1802, Chapter E, pp. H1–H35. doi: https://doi.org/10.3133/pp1802H

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. John Wiley, Chichester

    Book  Google Scholar 

  • Frierdich AJ, Catalano JG (2012) Distribution and speciation of trace elements in iron and manganese oxide cave deposits. Geochim Cosmochim Acta 91:240–253

    Article  Google Scholar 

  • Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348(3–4):452–463. https://doi.org/10.1016/j.jhydrol.2007.10.015

    Article  Google Scholar 

  • Ghasemizadeh R, Yu X, Butscher C, Hellweger F, Padilla I, Alshawabkeh A (2015) Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers. PLoS One 10(9):e0138954. https://doi.org/10.1371/journal.pone.0138954

    Article  Google Scholar 

  • Goldscheider N, Drew D (eds) (2007) Methods in Karst Hydrogeology. Taylor and Francis, London

    Google Scholar 

  • Gordon DW (2011) Hydrologic factors affecting sinkhole development in a field in the karst Dougherty plain, southwest of Albany, Georgia. In: Carrol GD (ed) proceedings of the 2011 Georgia water resources conference, April 11−13, 2011, Athens, Georgia: Warnell School of Forestry and Natural Resources, The University of Georgia

  • Gracia FJ, Gutiérrez F, Gutiérrez M (2003) The Jiloca karst Polje-tectonic graben (Iberian range, NE Spain). Geomorphology 52:215–231

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52(3):218–242

    Article  Google Scholar 

  • Herman JS, White WB (1985) Dissolution kinetics of dolomite: effects of lithology and fluid flow velocity. Geochim Cosmochim Acta 49:2017–2026

    Article  Google Scholar 

  • Hyland SE, Kennedy LM, Younos T, Parson S (2006). Analysis of sinkhole susceptibility and karst distribution in the Northern Shenandoah Valley, Virginia: implications for low impact development site suitability models, VWRRC, 210 Cheatham hall, Virginia Tech, Blacksburg, Virginia 24061-0444, VWRRC special report, SR31–2006

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Jones JV III, Piatak NM, Bedinger GM (2017) Zirconium and hafnium. Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds) Critical mineral resources of the United States—Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, Chapter V, pp. V1–V26, doi: https://doi.org/10.3133/pp1802V

  • Karavitis CA, Alexandris S, Tsesmelis DE, Athanasopoulos G (2011) Application of the standardized precipitation index (SPI) in Greece. Water 3(3):787–805. https://doi.org/10.3390/w3030787

    Article  Google Scholar 

  • Katsanou Κ (2018) Hellenic karst aquifers vulnerability approach using factor analysis: the example of the Louros karst aquifers. Geosciences 8(11):417. https://doi.org/10.3390/geosciences8110417

    Article  Google Scholar 

  • Kelley KD, Scott CT, Polyak DE, Kimball BE (2017) Vanadium, In: Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds), Critical mineral resources of the United States - Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, Chapter U, pp. U1-U36, doi: https://doi.org/10.3133/pp1802U

  • Kovalevsky VS, Kruseman GP, Rushton KR (eds) (2004) Groundwater Studies. An International Guide for Hydrogeological Investigations. IHP-VI, UNESCO

  • Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC Press/Taylor and Francis, Boca Raton

    Google Scholar 

  • Lambrakis N (2017) The Hellenic karst: propositions for research methodologies and applications examples. Proc. of the 11th, Intl. Hydrogeol Cong. Vol. 2:67–91

    Google Scholar 

  • Larocque M, Mangin A, Razacka M, Bantonc O (1998) Contribution of correlation and spectral analysis to the regional study of a karst aquifer. J Hydrol 205:217–231

    Article  Google Scholar 

  • Lauritzen S-E (2001) Marble stripe karst of the Scandinavian Caledonides: an end-member in the contact karst spectrum. Acta Carsologica 30:47–79

    Google Scholar 

  • Lax K, Selnius O (2005) Geochemical mapping at the Geological Survey of Sweden. Geochemistry: Exploration, Environment, Analysis 5:337–346

    Google Scholar 

  • Leontiadis IL, Payne BR, Letsios A, Papagianni N, Kakarelis D, Chadjiagorakis D (1983) Isotope hydrology study of Kato Nevrokopi of Drama. In: Proceedings of the symposium on isotope hydrology 1983. International Atomic Energy Agency, Vienna, pp 193–206

    Google Scholar 

  • Liñán Baena C, Andreo B, Mudry J, Carrasco Cantos F (2009) Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: the sierra de las Nieves karst aquifer, southern Spain. Hydrogeol J 17:843–853

    Article  Google Scholar 

  • Liu CQ, Lang YC, Satake H, Wu J, Li SL (2008) Identification of anthropogenic and natural inputs of sulate and chloride into the karstic ground eater of Guiyang, SW China: combined δ37Cl and δ34S approach. Environ Sci Technol 42(15):5421–5427. https://doi.org/10.1021/es800380w

    Article  Google Scholar 

  • Malik P (2015) Evaluating discharge regimes of karst aquifer. In: Stevanović Z (ed) Karst aquifers-characterization and engineering. Series: professional practice in earth science. Springer, Switzerland, pp 205–250

    Google Scholar 

  • Mangin A (1984) Pour une meilleure reconnaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J Hydrol 67:25–43

    Article  Google Scholar 

  • Mangin A, Pulido-Bosch A (1983) Aplicación de los análisis de correlación y espectral en el estudio de los acuíferos kársticos. Tecniterrae 51:53–65

    Google Scholar 

  • Marinos P, Dimadi A, Xidakis G, Koutitas C (1987) Groundwater hydraulics of a large karstic conduit-sinkflow drainage and spring discharge in Drama area, Greece. In: Proceedings of the 2nd multidisciplinary conference of sinkholes, and the environmental impact of karst. Orlado, 1987, pp 261–268

    Google Scholar 

  • Marinos P, Dimadi A, Xidakis G, Koutitas C (1994) Hydrogeologic conditions in west Falakro mountain. Hydraulic functioning of the karst spring of the springs of Aggitis and the Maara cave. BGSG (ISSN 2529−1718). XXX 4:159–172

    Google Scholar 

  • Massei N, Wang H, Dupont J-P, Rodet J, Laignel B (2003) Assessment of direct transfer and resuspension of particles during turbid flood at a karstic spring. J Hydrol 275(1–2):109–121. https://doi.org/10.1016/S0022-1694(03)00020-9

    Article  Google Scholar 

  • Massei N, Mahler B, Bakalowicz M, Fournier M (2007) Dupont J-P (2007) quantitative interpretation of specific conductance frequency distribution in karst. Groundwater 45:288–293. https://doi.org/10.1111/j.1745-6584.2006.00291.x

    Article  Google Scholar 

  • Mathevet T, Lepiller M, Mangin A (2004) Application of time-series analyses to the hydrological functioning of an alpine karstic system: the case of Bange-L’Eau-Morte. Hydrol Earth Syst Sci 8:1051–1064

    Article  Google Scholar 

  • Mayaud C, Wagner T, Benischke R, Birk S (2014) Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J Hydrol 511:628–639. https://doi.org/10.1016/j.jhydrol.2014.02.024

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scale. In: Proceedings of the 8th conference on applied climatology, Anaheim, California, 17–22 January 1993. American Meteorological Society, Boston, pp 179–184

    Google Scholar 

  • McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O (ed) Groundwater, past achievements and future challenges. Balkema, Rotterdam, pp 567–573

    Google Scholar 

  • Meinzer OE (1927) Large springs in the United States, US geological survey WSP 557, vol 94

    Google Scholar 

  • Meyerhoff BS, Karaoulis M, Fiebig F, Maxwell R, Revil A, Martin J, Graham W (2012) Visualization of conduit-matrix conductivity differences in a karst aquifer using time-lapse electrical resistivity. ERT Time-Lapse of karst conductivity Geophys Res Lett 39. https://doi.org/10.1029/2012GL053933

  • Milanovic S (2006) Hydrogeological characteristics of some deep siphonal springs in Serbia and Montenegro karst. Environ Geol 51:755–759. https://doi.org/10.1007/s00254-006-0391-1

    Article  Google Scholar 

  • Monteagudo L, Moreno JL, Picazo F (2012) River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales. Water Res 46(8):2759–2771. https://doi.org/10.1016/j.watres.2012.02.035

    Article  Google Scholar 

  • Moore RB, Staubitz WW (1984) Distribution and source of Barium in ground water at Cattaraugus Indian Reservation, Southwestern New York. USGS Water-Resources Investigations Report 84–4129 https://doi.org/10.3133/wri844129

  • Nalbantis I, Tsakiris G (2009) Assessment of hydrological drought revisited. Water Resour Manag 23:881–897

    Article  Google Scholar 

  • Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70:23–31

    Article  Google Scholar 

  • Nicod J (2003) A little contribution to the karst terminology: special of aberrant cases of poljes? Acta Carsologica 32(2–3):29–39

    Google Scholar 

  • Nimfopoulos MK, Michailidis KM, Christofides G (1997) Zincian rancieite from the Kato Nevrokopi manganese deposits, Macedonia, northern Greece. Geol Soc Lond, Spec Publ 119:339–347. https://doi.org/10.1144/GSL.SP.1997.119.01.22

    Article  Google Scholar 

  • Novel J-P, Dimadi A, Zervopoulou A, Bakalowicz M (2007) The Aggitis karst system, eastern Macedonia, Greece: hydrologic functioning and development of the karst structure. J Hydrol 334:477–492. https://doi.org/10.1016/j.jhydrol.2006.10.029

    Article  Google Scholar 

  • Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89

    Article  Google Scholar 

  • Panagopoulos G, Lambrakis N (2006) The contribution of time series analysis to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J Hydrol 329:368–376

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, Book 6, Chapter A43, p. 497, Available from: http://pubs.usgs.gov/tm/06/a43/. Accessed 2 Dec 2016

  • Petalas C (2017) Analysis of the hydrogeological and hydrochemical characteristics of an immature karst aquifer system. Environ Process 4(3):603–624. https://doi.org/10.1007/s40710-017-0250-y

    Article  Google Scholar 

  • Petalas C, Akratos C, Tsihrintzis VA (2018) Hydrogeological investigation of a karst aquifer system. Environ Process 5:155–181. https://doi.org/10.1007/s40710-017-0277-0

    Article  Google Scholar 

  • Peters E, PJJF Torfs PJJF, van Lanen HAJ, Bier G (2003) Propagation of drought through groundwater-a new approach using linear reservoir theory. Hydrol Process 17(15):3023–3040. https://doi.org/10.1002/hyp.1274

    Article  Google Scholar 

  • Petition for Inclusion on the U.S.A. National List of Allowed Substances (2009) - inclusion of nickel - micronutrient at §205.601 U)(6)(ii), Sep 4 2009

  • Petrochilos I (1952) Recherches spéléologiques dans la region de Nevrokopi. Société Spéléologique de la Grèce, I 5:286–293

    Google Scholar 

  • Pidwirny M (2011) Köppen climate classification system. Available from: http://www.eoearth.org/view/article/162263 Published: Updated: November 10, 2011, 8:31 am, Source: http://www.srh.noaa.gov/jetstream/global/climate.htm

  • Pu J, Yuan D, Zhang C, Zhao H (2012) Tracing the sources of strontium in karst groundwater in Chongqing, China: a combined hydrogeochemical approach and strontium isotope. Environ Earth Sci 67(8):2371–2381. https://doi.org/10.1007/s12665-012-1683-2

    Article  Google Scholar 

  • Pulido-Bosch A, Padilla A, Dimitrov D, Machkova M (1995) The discharge variability of some karst springs in Bulgaria studied by time series analysis. Hydrol Sci J 40:517–532

    Article  Google Scholar 

  • Quinlan JF, Ewers RO (1985) Ground water flow in limestone terranes: Strategy rationale and procedure for reliable, efficient monitoring of ground water quality in karst areas. In: Proceedings of the 5th National Symposium and Exposition on Aquifer Restoration and Groundwater Monitoring, Columbus, Ohio, pp. 197–243, Worthington, OH: National Water Well Association

  • Reile P (2005) Le Karst du massif du Falakro et la résurgence de Maaras - Résultats des travaux hydrogéologiques et topographiques. In: Proceedings of the 14th International Congress of Speleology, 21–28 August 2005, Athens, Greece, Hellenic Speleological Society

  • Reile P (2010) EXPEDITION 10 - Le karst du massif du Falakro et la résurgence de Aggitis cave (Maaras) - Résultats des travaux hydrogéologiques et topographiques, Province de Drama - Macedoine, Grèce du Nord

    Google Scholar 

  • Ren K, Pan X, Zeng J, Jiao Y (2017) Distribution and source identification of dissolved sulfate by dual isotopes in waters of the Babu subterranean river basin, SW China. J Radioanal Nucl Chem 312(2):317–328. https://doi.org/10.1007/s10967-017-5217-y

    Article  Google Scholar 

  • Sappa G, Barbieri M, Ergul S, Ferranti F (2012) Hydrogeological conceptual model of groundwater from carbonate aquifers using environmental isotopes (18O, 2H) and chemical tracers: a case study in southern Latium region Central Italy. JWARP 4:695–716. https://doi.org/10.4236/jwarp.2012.49080

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Slack JF, Kimball BE, Shedd KB (2017) Cobalt. In: Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds) Critical mineral resources of the United States - economic and environmental geology and prospects for future supply: U.S. Geological Survey professional paper 1802, chapter F, pp. F1–F40. doi: https://doi.org/10.3133/pp1802F

  • Smith BA, Hunt BB (2010) A comparison of the 1950s drought of record and the 2009 drought, Barton Springs segment of the Edwards aquifer, Central Texas. Gulf Coast Assoc Geol Soc Trans 60:611–622

    Google Scholar 

  • Somaratne N (2014) Characteristics of point recharge in karst aquifers. Water 6:2782–2807. https://doi.org/10.3390/w6092782

    Article  Google Scholar 

  • Steenhuis TS Van der Molen WH (1986) The Thornthwaite-Mather procedure as a simple engineering method to predict recharge. J Hydrol 84:221–229

    Article  Google Scholar 

  • Stevanović Z (2015) Karst aquifers-characterization and engineering, 1st edn. Springer International Publishing, Cham

    Google Scholar 

  • Stillings LL (2017), Selenium, In: Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds), Critical mineral resources of the United States - Economic and environmental geology and prospects for future supply: U.S. Geological Survey Professional Paper 1802, Chapter Q, pp. Q1–Q55, doi: https://doi.org/10.3133/pp1802Q

  • Subramani T, Rajmohan N, Elango L (2010) Groundwater geochemistry and identification of hydrogeochemical processes in hard rock region, southern India. Environ Monit Assess 162:123–137

    Article  Google Scholar 

  • Sweeting MM (1973) Karst Landforms. Columbia University Press, New York

    Google Scholar 

  • Tallaksen LM, Van Lanen HLJ (2004) Drought as a natural hazard. In: Tallaksen L, Van Lanen H (eds) Hydrological drought: processes and estimation methods for stream flow and groundwater. Elsevier, Amsterdam, pp 3–53

    Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, Publications in Climatology, X(3), U.S.A.

    Google Scholar 

  • Tröjbom M, Söderbäck B, Johansson P-O (2007) Hydrochemistry in surface water and shallow groundwater, site descriptive modelling, SDM-site Forsmark. SKB rapport R-07-55, vol 312, pp ISSN 1402–ISSN 3091

    Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18:1–12

    Article  Google Scholar 

  • Weeks JB, Gutentag ED (1988) Region 17, High Plains. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology, the geology of North America, vol 2, pp 157–164

    Google Scholar 

  • White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York, p 464

    Google Scholar 

  • White WB (2003) Conceptual model for karstic aquifers. Speleogenesis and evolution of karst aquifers. The Virtual Scientific Journal 1(1) P2, available from: www.speleogenesis,info (last access: 2013)

  • White WB, Vito C, Scheetz BE (2009) The mineralogy and trace element chemistry of black manganese oxide deposits from caves. J Caves Karst Stud 71(2):136–143

    Google Scholar 

  • WHO (2011) Molybdenum in drinking water. Background document for development of WHO guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–21. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xeidakis G (1994) Touristic development of a large karstic conduit. The case of the subterranean river and cave of piges Aggiti (Maara), Drama, N. Greece. Bulletin de la Société Spéléologique de Grèce. XXI in Greek

  • Ye X, Yang P, Zhang Q (2015) Hydrogeochemical processes and vulnerability of a typical karst underground river system, Southwest China. Geochem J 49:259–269. https://doi.org/10.2343/geochemj.2.0354

    Article  Google Scholar 

  • Yousif M, Oguchi T, Anazawa K et al (2015) Framework for investigation of karst aquifer in an arid zone, using isotopes, remote sensing and GIS applications: the northwestern coast of Egypt. Environ Process 2:37–60. https://doi.org/10.1007/s40710-015-0063-9

    Article  Google Scholar 

  • YPEKA/EGY - Hellenic Republic (2016) Low zone of the closed basin of Ochiro (GR11RAK0005) in: flood risk management plan of river basins of the water district of eastern Macedonia (GR11). Stage I - 4th phase flood risk maps - non-technical report I-4P09.T1-5. (in Greek)

  • Zwahlen F (2003) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers: Final report (COST Action 620), European Cooperation in the Field of Scientific and Technical Research, European Commission, Luxemburg

Download references

Acknowledgements

The authors are greatly indebted to Dr. Konstantina Katsanou of the Laboratory of Hydrogeology, Section of Applied Geology and Geophysics, Department of Geology, University of Patras, for performing the heavy mineral analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos P. Petalas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petalas, C.P., Moutsopoulos, K.N. Hydrogeologic Behavior of a Complex and Mature Karst Aquifer System under Drought Condition. Environ. Process. 6, 643–671 (2019). https://doi.org/10.1007/s40710-019-00382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-019-00382-x

Keywords

Navigation