Skip to main content

Advertisement

Log in

Analysis of the Hydrogeological and Hydrochemical Characteristics of an Immature Karst Aquifer System

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

This study intends, using classic and new techniques (e.g., Time Series Analysis, TSA), and hydrogeological data for the period February 2008 - May 2011, to improve the existing knowledge on the hydrogeology of the immature karst Philippi aquifer system (PHAS), Northeast Greece, in order to introduce the sustainable integrated water management of this system. The PHAS catchment consists of Mesozoic fissured and slightly karstified marbles, and covers an area of 121.7 km2. It discharges through the perennial, fault-controlled, overflow Voirani spring, which serves the needs of 85,000 inhabitants. Source of recharge is direct diffuse infiltration of precipitation. The Voirani spring mean discharge rate is 1.48 m3/s and ranges from 1 to 2.1 m3/s. Its variability index ranges from 1.73 to 2.07 m3/s. Auto- and cross-correlation and spectral analyses were used in combination with PHAS hydrogeological characteristics to study the interrelationship of daily spring discharge and rainfall, and provided useful information about the PHAS memory effect. PHAS baseflow prevailed greatly and had a behavior similar to a porous aquifer. The catchment area recharges and stores deep circulating water, while its karstification is poorly developed with high storages. The Voirani spring water is of Ca-HCO3 chemical type, of high quality, and oversaturated with respect to calcite. Examination of hydrograph and chemograph data revealed that PHAS is dominated by diffuse flow of stable hydrochemical composition. The application of TSA combined with classic hydrogeological techniques can be used in order to achieve a sustainable integrated water management of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Charideh A (2012) Recharge rate estimation in the mountain karst aquifer system of Figeh spring, Syria. Environ Earth Sci 65:1169–1178

    Article  Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (great Britain). J Hydrol 35:93–110. doi:10.1016/0022-1694(77)90079-8

    Article  Google Scholar 

  • Aydin H (2005) Investigation of morphology-hydrogeology relations in Harmankoy-Beyyayla (Bilecik) karst system, PhD Thesis (in Turkish with English summary), Hacettepe University, Institute of Science and Technology, Ankara

  • Bakalowicz M (1977) Etude du degré d’organisation des écoulements souterrains dans les aquifères carbonates par une méthode hydrogéochimique nouvelle, Académie des Sciences, Paris, 284: 2463–2466

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160

    Article  Google Scholar 

  • Banjak D, Nikolić J (2012) Hydrochemical characteristics and water quality of the Mušnica River catchment, Bosnia and Herzegovina. Hydrol Sci J 57:562–575

    Article  Google Scholar 

  • Batiot CC, Emblanch C, Blavoux B (2003) Total organic carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems. Compt Rendus Geosci 335:205–214

    Article  Google Scholar 

  • Benavente J, Pulido-Bosch A, Mangin A (1985) Application of correlation and spectral procedures to the study of the discharge in a karstic system (eastern Spain). In: Karst water resources, Ankara-Antalya, pp. 67–75

  • Berndt MP, Katz BG, Lindsey BD, Ardis AF, Skach KA (2005) Comparison of water chemistry in spring and well samples from selected carbonate aquifers in the United States. In Kuriansky, E., ed., 2005, US Geol Surv interest group proceedings, Rapid City, South Dakota, US Geol Surv scientific investigations Report 5160: 74–81

  • Bonacci O (1993) The catchment area of the Sv. Ivan karst spring in Istria (Croatia). Ground Water 31:767–773

    Article  Google Scholar 

  • Bonacci O (1999) Water circulation in karst and determination of catchment areas: example of the river Zrmanja. Hydrol Sci J 44:373–386

    Article  Google Scholar 

  • Brahana JV, Thraikill J, Freeman T, Ward WC (1988) Carbonate rocks. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology, The Geology of North America, vol 2, pp 333–352

  • Chicanoa ML, Bouamamaa M, Vallejosb A, Boschb AP (2001) Factors which determine the hydrogeochemical behavior of karstic springs. A case study from the Betic cordilleras, Spain. Appl Geochem 16:1179–1192. doi:10.1016/S0883-2927(01)00012-9

    Article  Google Scholar 

  • Cowell DP, Ford DC (1983) Karst hydrology of the Bruce peninsula, Ontario, Canada. J Hydrol 61:163–168

    Article  Google Scholar 

  • Davis SN (1968) Initiation of groundwater flow in jointed limestone. Natl Speleol Soc Bull 28:111–117

    Google Scholar 

  • Delbart C, Valdes D, Barbecot F, Tognelli A, Richon P, Couchoux L (2014) Temporal variability of karst aquifer response time established by the sliding-windows cross-correlation method. J Hydrol 511:580–588

    Article  Google Scholar 

  • Demiroglu M, (2008) Hydrogeology and Hydrochemistry of Eskisehir-Sivrihisar-Günyüzü Basin, PhD Thesis, Istanbul Technical University, Institute of Science and Technology, Istanbul

  • Demiroglu M (2016) Classification of karst springs for flash-flood-prone areas in western Turkey. Nat Hazards Earth Syst Sci 16:1473–1486. doi:10.5194/nhess-16-1473-2016

    Article  Google Scholar 

  • Dimadis E, Kosmas C (1989) Geological and tectonic structure of the Lekani mountains syncline, Geologica Rhodopica, Sofia I, 145–152

  • Dinter DA, Macfarlane A, Hames W, Isachsen C, Bowring S, Royden L (1995) U-Pb and 40Ar/39Ar geochronology of the Symvolon granodiorite: implications for the thermal and structural evolution of the Rhodope metamorphic core complex, northeastern Greece. Tectonics 14:886–908

    Article  Google Scholar 

  • Ede DP (1972) Comment on “seasonal fluctuation in the chemistry of limestone spring” by ET Shuster and WB white. J Hydrol 16:53–55

    Article  Google Scholar 

  • EU Council (1998) Council Directive 98/83 about water quality intended for human consumption, in official paper of the European Communities: EC, Brussels, L330: 32–54.

  • Fiorillo F, Doglioni A (2010) The relation between karst spring discharge and rainfall by cross-correlation analysis Campania, southern Italy. Hydrogeol J 18:1881–1895

    Article  Google Scholar 

  • Fiorillo F, Pagnozzi M, Ventafridda G (2015) A model to simulate a recharge processes in karst massifs. Hydrol Process 29:2301–2314

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst Hydrogeology and Geomorphology. Wiley

  • Freeze AR, Cherry AJ (1979) Groundwater. Prentice-Hall Inc., Englewood

    Google Scholar 

  • Gand KC, McMahon TA, Finlayson BL (1991) Analysis of periodicity in streamflow and rainfall data by Cowell’s indices. J Hydrol 123:105–118

    Article  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, Minerals and Equilibria, Harper and Row

  • Genthon P, Bataille A, Fromant A, D’Hulst D, Bourges F (2005) Temperature as a marker for karstic waters hydrodynamics. Inferences from 1 year recording at la Peyrére cave (Ariège, France). J Hydrol 311:157–171

    Article  Google Scholar 

  • Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Groundwater flow and transport modeling of karst aquifers, with particular reference to the north coast limestone aquifer system of Puerto Rico. Hydrogeol J 20:1441–1461. doi:10.1007/s10040-012-0897-4

    Article  Google Scholar 

  • Ghasemizadeh R, Butscher C, Hellweger F, Padilla I, Alshawabkeh A (2015) Equivalent porous media (EPM) simulation of groundwater hydraulics and contaminant transport in karst aquifers. PLoS One 10(9):e0138954. doi:10.1371/journal.pone.0138954

    Article  Google Scholar 

  • Gilboa Y, Gal G, Markel D et al (2015) Effect of land-use change scenarios on nutrients and TSS loads. Environ. Process. 2:593. doi:10.1007/s40710-015-0109-z

    Article  Google Scholar 

  • Goldscheider N (2005) Fold structure and underground drainage pattern in the alpine karst system Hochifen-Gottesacker. Eclogae Geol Helv 98:1–17

    Article  Google Scholar 

  • Gwenzi W, Nyamadzawo G (2014) Hydrological impacts of urbanization and urban roof water harvesting in water-limited catchments: a review. Environ Process 1:573. doi:10.1007/s40710-014-0037-3

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242. doi:10.1002/2013RG000443

    Article  Google Scholar 

  • Herman JS, White WB (1985) Dissolution kinetics of dolomite: effects of lithology and fluid flow velocity. Geochim et Cosmochim Acta 49:2017–2026

    Article  Google Scholar 

  • Herman EK, Toran L, White WB (2009) Quantifying the place of karst aquifers in the groundwater to surface water continuum: a time series analysis study of storm behaviour in Pennsylvania water resources. J Hydrol 376:307–317

    Article  Google Scholar 

  • Institute of Geology and Mineral Exploration-Greece (2000) Hydrogeological map of Lekani mountains area, scale: 1:50000, Compilation: E, Vergis

  • Jencov I, Petrič M (2010) Time series analysis, modeling and assesment of optimal exploitation of the Nemanja karst springs, Serbia. Acta Carstologica 39(2):187–200

    Google Scholar 

  • Kovačiči G (2010) Hydrogeological study of the Malenščica karst spring (SW Slovenia) by means of a time series analysis. Acta Carstologica 39(2):201–215

    Google Scholar 

  • Kovalevsky VS, Kruseman GP, Rushton KR (Eds) (2004) Groundwater studies. An international guide for hydrogeological investigations. IHP-VI, UNESCO

  • Kronberg P (1969) Glienderung, Petrographie und Tektogenese des Rhodopen – Kristalins in Tsal-Dag, Symvolon und Ost Pangaon (Griechisch – Makedonien) Geotekt Forsch 31: 1–49

  • Langmuir D (1997) Aqueous Environmental Geochemistry Prentice Hall

  • Larocque M, Mangin A, Razack M, Banton O (1998) Contribution of correlation and spectral analysis to the regional study of a karst aquifer. J Hydrol 205:217–231

    Article  Google Scholar 

  • Leitão TE, Mota R, Novo ME et al (2014) Combined use of electrical resistivity tomography and hydrochemical data to assess anthropogenic impacts on water quality of a karstic region: a case study from Querença-Silves, South Portugal. Environ. Process. 1:43. doi:10.1007/s40710-014-0002-1

  • Leontiadis IL, Vergis S, Christodoulou T (1996) Isotope hydrology study of areas in eastern Macedonia and Thrace, northern Greece. J Hydrol 182:1–17

    Article  Google Scholar 

  • Liñán Baena C, Andreo B, Mudry J, Carrasco Cantos F (2009) Groundwater temperature and electrical conductivity as tools to characterize flow patterns in carbonate aquifers: the Sierra de las Nieves karst aquifer, southern Spain. Hydrogeol J 17:843–853

  • Mangin A (1975) Contribution à l'étude hydrodynamique des aquifères karstiques. Thèse Univ. Dijon. Annales de Spéléologie, 29/3: 283–332, 29/4: 495–601, 30/1: 21–124

  • Mangin A (1984) Pour une meilleure connaissance des syste’mes hydrologiques a` partir des analyses correlatoire et spectrale. J Hydrol 67:25–43

    Article  Google Scholar 

  • Mangin A, Pulido-Bosch A (1983) Aplicacion de los analisis de correlacion y espectral en el estudio de los acuiferos karsticos. Tecniterrae 51:53

    Google Scholar 

  • Massei N, Mahler BJ, Bakalowicz M, Fournier M, Dupont JP (2007) Quantitative interpretation of specific conductance frequency distribution in karst. Groundwater 45:288–293. doi:10.1111/j.1745-6584.2006.00291.x

    Article  Google Scholar 

  • Mathevet T, Lepiller M, Mangin A (2004) Application of time-series analyses to the hydrological functioning of an alpine karstic system: the case of BangeL eau-Morte. Hydrol Earth Syst Sci 8:1051–1064

    Article  Google Scholar 

  • Mazor E (1991) Applied chemical and isotopic groundwater hydrology, Open University Press

  • McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililom O et al. (eds) Groundwater past achievements and future challenges. Balkema, Rotterdam, pp 567–573

  • Meinzer OE (1927) Large springs in the United States. Government printing office, Washington, D.C.: USGS water supply paper 557, 94 pp

  • Mellisaris P (1969) Water supply of the city of Kavala from the Voiranis spring. Report - Drillhole lithologic logs. EGKEM EPE - Subsurface Surveys (In Greek)

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Milanović PT (2004) Water Resources Engineering in karst, CRC PRESS

  • Molina JM (1987) Facies analysis of Mesozoic in the external Subbetic (Province of Cordoba and southern Jaen; in Spanish) PhD thesis, Univ. Granada

  • Novel JP, Dimadi A, Zervopoulou A, Bakalowicz M (2007) The Aggitis karst system, Eastern Macedonia, Greece: Hydrologic functioning and development of the karst structure. J Hydrol 334:477–492

    Article  Google Scholar 

  • Özler ΗΜ (2001) Karst hydrogeology of Kusluk-Dilmetas karst springs, Van-Eastern Turkey. Environ Geol 4:257–268

    Google Scholar 

  • Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89

    Article  Google Scholar 

  • Panagopoulos G, Lambrakis N (2006) The contribution of TSA to the study of the hydrodynamic characteristics of the karst systems: application on two typical karst aquifers of Greece (Trifilia, Almyros Crete). J Hydrol 329:368–376

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, one-dimensional transport, and inverse geochemical calculations, US Geol Surv water Resour Inv rep 99–4259. US Geol Surv, Reston VA

    Google Scholar 

  • Petalas C, Pliakas F, Diamantis I, Kallioras A (2005) Development of an integrated conceptual model for the rational management of the transboundary Nestos River, Greece. Environ Geol 58:941–954

    Article  Google Scholar 

  • Phelps CG (2001) Geochemistry and Origins of Mineralized Waters in the Floridan Aquifer System, Northeastern Florida, Prepared in cooperation with the City of Jacksonville U.S. Geological Survey, Water Resources Investigations Report 01–4112

  • Philandras CM, Nastos PT, Kapsomenakis J, Douvis KC, Tselioudis J, Zerefos CS (2011) Long term precipitation trends and variability within the Mediterranean region. Nat Hazards Earth Syst Sci 11:3235–3250

    Article  Google Scholar 

  • Pidwirny M (2011) Köppen climate classification system. Retrieved from http://www.Eoearth.Org/view/article/162263, source: NOAA

  • Plummer LM, Jones BF, Truesdell AH (1976) WATEQF-A computer program for calculating chemical equilibrium of natural waters, Washington, DC: US Geol Surv, (tDAR id: 113104)

  • Pu J, Yuan D, Zhang C, Zhao H (2012) Tracing the sources of strontium in karst groundwater in Chongqing, China: a combined hydrogeochemical approach and strontium isotope. Environ Earth Sci 67:2371–2381

    Article  Google Scholar 

  • Pulido-Bosch A, Padilla A, Dimitrov D, Mackhkova M (1995) The discharge variability of some karst springs in Bulgaria studied by time series analysis. Hydrol Sci J 40(4):517–532

    Article  Google Scholar 

  • Raeisi E, Karami G (1997) Hydrochemographs of Berghan karst spring as indicators of aquifer characteristics. J Cave Karst Studies 59:112–118

  • Rahnemaei M, Zare M, Nematollahi AR, Sedhi H (2005) Application of spectral analysis of daily water level and spring discharge hydrographs data for comparing physical characteristics of karst aquifers. J Hydrol 311:106–116

    Article  Google Scholar 

  • Rashed KA (2012) Assessing degree of karstification: a new method of classifying karst aquifers. Sixteenth Int water Technology conference, IWTC 16, Istanbul

  • Raynaud F, Borrell-Estupina V, Pistre S, Van-Exter S, Bourgeois N, Dezetter A, Servat E (2015) Combining hydraulic model, hydrogeomorphological observations and chemical analyses of surface waters to improve knowledge on karst flash floods genesis. Proc. IAHS 369:55–60. doi:10.5194/piahs-369-55-2015

  • Samani N (2001) Response of karst aquifers to rainfall and evaporation, Maharlu basin, Iran. J of Cave and Karst Studies 63(1):33–40

    Google Scholar 

  • Sanderson GM, Hemming DL, Betis RA (2011) Regional temperature and precipitation changes under high-end (≥4°C) global warming. Phil Trans R Soc A 369:85–98. doi:10.1098/rsta.2010.0283

    Article  Google Scholar 

  • Sappa G, Barbieri M, Ergull S, Ferranti F (2012) Hydrogeological conceptual model of groundwater from carbonate aquifers using environmental isotopes (18O, 2H) and chemical tracers: a case study in southern Latium region, Central Italy. J Water Res Prot 4:695–716

    Article  Google Scholar 

  • Sheffer NA, Dafny E, Gvirtzman H, Navon S, Frumkin A, Morin E (2010) Hydrometeorological daily recharge assessment model (dream) for the western mountain aquifer, Israel: Model application and effects of temporal patterns. Water Res Res 46:W05510

    Article  Google Scholar 

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Stevanović Z. (2015) Karst aquifers - characterization and Engineering, 1st ed.; Springer International Publishing: Cham

  • Taylor CJ and Greene EA (2008) Hydrogeologic characterization and methods used in the investigation of karst hydrology in: field techniques for estimating water fluxes between surface water and groundwater, chapter 3 (Eds DO Rosenberry and JW LaBaugh, techniques and methods 4–D2, U.S. Department of the Interior U.S. Geological Survey

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Institute of Technology, publications in climatology, X(3), USA

  • Turc L (1954) Le bilan d’ eau des sols: Relations entre les precipitations, l’ evaporation et l’ ecoulement. Annales Agronomiques 5(4):491–595; 6(1):5–131

  • Vergis S (2000) Hydrogeological assessment of western Thrace and eastern Macedonia - water resources potential of karst aquifer systems of Lekani Mountain area, Institute of Geology & Mineral Exploration, Xanthi Greece

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402. doi:10.1029/2010GL044571

    Article  Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Yousif M, Oguchi T, Anazawa K et al (2015) Framework for investigation of karst aquifer in an arid zone, using isotopes, remote sensing and GIS applications: the northwestern coast of Egypt. Environ. Process. 2:37. doi:10.1007/s40710-015-0063-9

    Article  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to Dr. Konstantina Katsanou of the Laboratory of Hydrogeology, Section of Applied Geology and Geophysics, Department of Geology, University of Patras, for performing the heavy mineral analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Petalas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petalas, C. Analysis of the Hydrogeological and Hydrochemical Characteristics of an Immature Karst Aquifer System. Environ. Process. 4, 603–624 (2017). https://doi.org/10.1007/s40710-017-0250-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-017-0250-y

Keywords

Navigation