Skip to main content
Log in

Sensitivity Analysis of Empirical and Data-Driven Models on Longitudinal Dispersion Coefficient in Streams

  • Original Article
  • Published:
Environmental Processes Aims and scope Submit manuscript

Abstract

Longitudinal dispersion coefficient (LDC) is a key element in pollutant transport modeling in streams. Several empirical and data-driven models have been proposed to evaluate this parameter. In this study, sensitivity analysis was performed on four key parameters affecting the LDC including: channel width, flow depth, mean flow velocity and shear velocity. In addition, Monte Carlo simulation was used to generate new datasets and evaluate performance of LDC estimation methods based on uncertainty of input parameters. Sensitivity indices of the input parameters in selected empirical equations and differential evolution model follow almost the same trend, where mean flow velocity is the most sensitive parameter among input parameters and the prediction accuracy depends heavily on the value of this parameter. In above mentioned models, shear velocity had a negative value and a reverse effect on LDC estimation. Channel width and mean flow velocity have the highest sensitivity in M5 model for narrow and wide streams, respectively. Based on sensitivity indices, the efficiency of empirical and data-driven models in different conditions, according to uncertainties in the input parameters, has been investigated. Result of LDC estimation based on the data of Monte Carlo simulation, showed that most LDC estimation models have a high uncertainty for upper LDC values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alizadeh MJ, Ahmadyar D, Afghantoloee A (2017) Improvement on the existing equations for predicting longitudinal dispersion coefficient. Water Resour Manag 31:1777–1794

    Article  Google Scholar 

  • Antonopoulos VZ, Georgiou PE, Antonopoulos ZV (2015) Dispersion coefficient prediction using empirical models and ANNs. Environmental Processes 2:379–394. https://doi.org/10.1007/s40710-015-0074-6

    Article  Google Scholar 

  • Atkinson TC, Davis PM (2000) Longitudinal dispersion in natural channels: l. experimental results from the river Severn, U.K. Hydrol Earth Syst Sci Discuss 4:345–353

    Article  Google Scholar 

  • Azamathulla HM, Wu F-C (2011) Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl Soft Comput 11:2902–2905

    Article  Google Scholar 

  • Beven K (1979) A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. J Hydrol 44:169–190. https://doi.org/10.1016/0022-1694(79)90130-6

    Article  Google Scholar 

  • Chatila GJ (1997) Modeling of pollutant transfer in compound open channels. PhD dissertation. University of Ottawa, Ontario

    Google Scholar 

  • Davis PM, Atkinson TC, Wigley TML (2000) Longitudinal dispersion in natural channels: 2. the roles of shear flow dispersion and dead zones in the river Severn, U.K. Hydrol Earth Syst Sci Discuss 4:355–371

    Article  Google Scholar 

  • Dawson R, Hall J, Sayers P, Bates P, Rosu C (2005) Sampling-based flood risk analysis for fluvial dike systems. Stoch Env Res Risk A 19:388–402

    Article  Google Scholar 

  • Deng Z-Q, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127:919–927. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(919)

    Article  Google Scholar 

  • Disley T, Gharabaghi B, Mahboubi AA, McBean EA (2015) Predictive equation for longitudinal dispersion coefficient. Hydrol Process 29:161–172. https://doi.org/10.1002/hyp.10139

    Article  Google Scholar 

  • Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5:544–560. https://doi.org/10.1017/S0022112059000374

    Article  Google Scholar 

  • Etemad-Shahidi A, Taghipour M (2012) Predicting longitudinal dispersion coefficient in natural streams using M5' model tree. J Hydraul Eng 138:542–554

    Article  Google Scholar 

  • Fischer HB (1967) The mechanics of dispersion in natural streams. J Hydraul Div 93(6):187–216

    Google Scholar 

  • Fischer HB (1968) Dispersion predictions in natural streams. J Sanit Eng Div 94:927–944

    Google Scholar 

  • Gardner RH, O'neill RV, Mankin JB, Carney JH (1981) A comparison of sensitivity analysis and error analysis based on a stream ecosystem model. Ecol Model 12(3):173–190

    Article  Google Scholar 

  • Gharabaghi B, Sattar AMA (2017) Empirical models for longitudinal dispersion coefficient in natural streams. J Hydrol. https://doi.org/10.1016/j.jhydrol.2017.01.022

  • Godfrey RG, Frederick BJ (1970) Stream dispersion at selected sites, US Government printing office, Washington

  • Gong L, Cy X, Chen D, Halldin S, Chen YD (2006) Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J Hydrol 329:620–629. https://doi.org/10.1016/j.jhydrol.2006.03.027

    Article  Google Scholar 

  • Graf JB (1995) Measured and predicted velocity and longitudinal dispersion at steady and unsteady flow, Colorado River, Glen Canyon Dam to Lake Mead. J Am Water Resour Assoc 31:265–281. https://doi.org/10.1111/j.1752-1688.1995.tb03379.x

    Article  Google Scholar 

  • Guymer I (1998) Longitudinal dispersion in sinuous channel with changes in shape. J Hydraul Eng 124:33–40. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(33)

    Article  Google Scholar 

  • Haghiabi AH (2016) Prediction of longitudinal dispersion coefficient using multivariate adaptive regression splines. J Earth Syst Sci 125:985–995

    Article  Google Scholar 

  • Haghiabi AH (2017) Modeling river mixing mechanism using data driven model. Water Resour Manag 31:811–824

    Article  Google Scholar 

  • Hall JW, Boyce SA, Wang Y, Dawson RJ, Tarantola S, Saltelli A (2009) Sensitivity analysis for hydraulic models. J Hydraul Eng 135:959–969

    Article  Google Scholar 

  • Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32:135–154. https://doi.org/10.1007/bf00547132

    Article  Google Scholar 

  • Ho DT, Schlosser P, Caplow T (2002) Determination of longitudinal dispersion coefficient and net advection in the tidal Hudson river with a large-scale, high resolution SF6 tracer release experiment. Environ Sci Technol 36:3234–3241

    Article  Google Scholar 

  • Huber PJ (1981) Robust Statistics. John Wiley & Sons, Inc., New York

  • Hupet F, Vanclooster M (2001) Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. J Hydrol 243:192–204

    Article  Google Scholar 

  • Kashefipour SM, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Res 36:1596–1608. https://doi.org/10.1016/S0043-1354(01)00351-7

    Article  Google Scholar 

  • Li X, Liu H, Yin M (2013) Differential evolution for prediction of longitudinal dispersion coefficients in natural streams. Water Resour Manag 27:5245–5260. https://doi.org/10.1007/s11269-013-0465-2

    Article  Google Scholar 

  • Liu H (1977) Predicting dispersion coefficient of streams. J Environ Eng Div 103:59–69

    Google Scholar 

  • McCuen RH (1973) The role of sensitivity analysis in hydrologic modeling. J Hydrol 18:37–53. https://doi.org/10.1016/0022-1694(73)90024-3

    Article  Google Scholar 

  • McCuen RH (1974) A sensitivity and error analysis of procedures used for estimating evaporation. J Am Water Resour Assoc 10:486–497

    Article  Google Scholar 

  • McQuivey RS, Keefer TN (1974) Simple method for predicting dispersion in streams. J Environ Eng Div 100:997–1011

    Google Scholar 

  • Mishra S (2009) Uncertainty and sensitivity analysis techniques for hydrologic modeling. J Hydroinf 11:282–296

    Article  Google Scholar 

  • Mount NJ, Dawson CW, Abrahart RJ (2013) Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework. Hydrol Earth Syst Sci 17:2827–2843

    Article  Google Scholar 

  • Nakhaei N, Etemad-Shahidi A (2012) Applying Monte Carlo and classification tree sensitivity analysis to the Zayandehrood River. J Hydroinf 14:236–250

    Article  Google Scholar 

  • Noori R, Ghiasi B, Sheikhian H, Adamowski JF (2017) Estimation of the dispersion coefficient in natural rivers using a granular computing model. J Hydraul Eng 143(5):04017001

    Article  Google Scholar 

  • Nordin CF, Sabol GV (1974) Empirical data on longitudinal dispersion in rivers. US Geological Survey, Water Resources Investigations, Report No. 74-20, p 332

  • Papadimitrakis I, Orphanos I (2004) Longitudinal dispersion characteristics of rivers and natural streams in Greece. Water Air Soil Poll Focus 4:289–305. https://doi.org/10.1023/b:wafo.0000044806.98243.97

    Article  Google Scholar 

  • Parsaie A, Haghiabi AH (2017) Computational modeling of pollution transmission in rivers. Appl Water Sci 7:1213–1222. https://doi.org/10.1007/s13201-015-0319-6

    Article  Google Scholar 

  • Pasha M, Lansey K (2010) Effect of parameter uncertainty on water quality predictions in distribution systems-case study. J Hydroinf 12:1–21

    Article  Google Scholar 

  • Radwan M, Willems P, Berlamont J (2004) Sensitivity and uncertainty analysis for river quality modelling. J Hydroinf 6:83–99

    Article  Google Scholar 

  • Rana G, Katerji N (1998) A measurement based sensitivity analysis of the Penman-Monteith actual evapotranspiration model for crops of different height and in contrasting water status. Theor Appl Climatol 60:141–149. https://doi.org/10.1007/s007040050039

    Article  Google Scholar 

  • Rutherford JC (1994) River Mixing. John Wiley & Sons, ltd, Chichester

  • Sahay RR (2011) Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environ Fluid Mech 11:247–261. https://doi.org/10.1007/s10652-010-9175-y

    Article  Google Scholar 

  • Sahay RR, Dutta S (2009) Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrol Res 40:544–552. https://doi.org/10.2166/nh.2009.014

    Article  Google Scholar 

  • Sahin S (2014) An empirical approach for determining longitudinal dispersion coefficients in rivers. Environmental Processes 1:277–285. https://doi.org/10.1007/s40710-014-0018-6

    Article  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in diagnostic modelling: Monte Carlo filtering and regionalised sensitivity analysis, Bayesian uncertainty estimation and global sensitivity analysis. In: Sensitivity Analysis in Practice. John Wiley & Sons, ltd, pp 151–192. https://doi.org/10.1002/0470870958.ch6

  • Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. John Wiley & Sons, ltd, Chichester

  • Sattar AMA, Gharabaghi B (2015) Gene expression models for prediction of longitudinal dispersion coefficient in streams. J Hydrol 524:587–596. https://doi.org/10.1016/j.jhydrol.2015.03.016

    Article  Google Scholar 

  • Saxton KE (1975) Sensitivity analyses of the combination evapotranspiration equation. Agric Meteorol 15:343–353. https://doi.org/10.1016/0002-1571(75)90031-X

    Article  Google Scholar 

  • Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124:25–32. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:1(25)

    Article  Google Scholar 

  • Tayfur G, Singh VP (2005) Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 131(11):991–1000

    Article  Google Scholar 

  • Taylor G (1954) The dispersion of matter in turbulent flow through a pipe. Proc R Soc Lond A Mat Sci 223:446–468. https://doi.org/10.1098/rspa.1954.0130

    Article  Google Scholar 

  • Velísková Y, Sokáč M, Halaj P, Koczka Bara M, Dulovičová R, Schügerl R (2014) Pollutant spreading in a small stream: a case study in Mala Nitra canal in Slovakia. Environmental Processes 1:265–276

    Article  Google Scholar 

  • White W, Milli H, Crabbe A (1973) Sediment transport: an appraisal methods, Vol. 2: Performance of theoretical methods when applied to flume and field data. Hydr Res Station Rep. N. IT 119, Wallingford

  • Yotsukura N, Fischer HB, Sayre WW (1970) Measurement of mixing characteristics of the Missouri River between Sioux City, Iowa, and Plattsmouth, Nebraska. No. 1899-G. USGPO

  • Zeng Y, Huai W (2014) Estimation of longitudinal dispersion coefficient in rivers. J Hydro Environ Res 8:2–8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Zahiri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Table 8 Geometric, hydraulic and dispersion coefficient datasets used in this study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nezaratian, H., Zahiri, J. & Kashefipour, S.M. Sensitivity Analysis of Empirical and Data-Driven Models on Longitudinal Dispersion Coefficient in Streams. Environ. Process. 5, 833–858 (2018). https://doi.org/10.1007/s40710-018-0334-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40710-018-0334-3

Keywords

Navigation