Skip to main content
Log in

Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) model is developed for predicting the longitudinal dispersion coefficient in natural rivers. The model uses few rivers’ hydraulic and geometric characteristics, that are readily available, as the model input, and the target output is the longitudinal dispersion coefficient (K). For performance evaluation of the model, using published field data, predictions by the developed ANN model are compared with those of other reported important models. Based on various performance indices, it is concluded that the new model predicts the longitudinal dispersion coefficient more accurately. Sensitive analysis performed on input parameters indicates stream width, flow depth, stream sinuosity, flow velocity, and shear velocity to be the most influencing parameters for accurate prediction of the longitudinal dispersion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASCE Task Committee (2000) Artificial neural networks in hydrology II. J Hydrol Eng 5(2): 124–132

    Article  Google Scholar 

  2. Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11): 919–927

    Article  Google Scholar 

  3. Elder JW (1959) The dispersion of a marked fluid in turbulent shear flow. J Fluid Mech 5(4): 544–560

    Article  Google Scholar 

  4. Fischer BH (1967) The mechanics of dispersion in natural streams. J Hydraul Eng 93(6): 187–216

    Google Scholar 

  5. Fischer BH, List EJ, Koh RCY, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Academic Press, New York, pp 104–138

    Google Scholar 

  6. Godfrey RG, Frederick BJ (1970) Stream dispersion at selected sites. US Geological Survey Paper 433-K, Washington, DC

    Google Scholar 

  7. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan College Publishing Co., New York

    Google Scholar 

  8. Iwasa Y, Aya S (1991) Predicting longitudinal dispersion coefficient in open channel flows. In: Proceedings of the internation symposium on environmental hydraulics, Hong Kong, pp 505–510

  9. Jeon TM, Back KO, Seo IW (2007) Development of an empirical equation for transverse dispersion coefficient in natural streams. Environ Fluid Mech 7(2207): 317–329

    Article  Google Scholar 

  10. Kashefipour MS, Falconer RA (2002) Longitudinal dispersion coefficients in natural channels. Water Resour Res 36(6): 1596–1608

    CAS  Google Scholar 

  11. Koussis AD, Rodriguez-Mirasol J (1998) Hydraulic estimation of dispersion coefficient in streams. J Hydraul Eng 124(3): 317–320

    Article  Google Scholar 

  12. Liu H (1977) Predicting dispersion coefficient of streams. J Environ Eng Div 103(1): 59–69

    Google Scholar 

  13. Mathswork Inc., version 7

  14. McQuivey RS, Keefer TN (1974) Simple method for predicting dispersion in streams. J Environ Eng Div 100(4): 997–1011

    Google Scholar 

  15. Nordin CF, Sabol GV (1974) Empirical data on longitudinal dispersion in rivers. US Geological Survey Water Resource. Invest 20–74, Washington, DC

  16. Papadimitrakis I, Orphanos I (2004) Longitudinal dispersion characteristics of rivers and natural streams in Greece. Water Air Soil Pollut 4: 289–305

    Google Scholar 

  17. Patil S, Li CS, Li X, Li C, Tam BYF, Song CY, Chen YP, Zhang Q (2009) Longitudinal dispersion in wave-current-vegetation flow. Phys Oceanogr 19(1): 45–60

    Article  Google Scholar 

  18. Piasecki M, Katopodes ND (1999) Identification of stream dispersion coefficient by adjoin sensitivity method. J Hydraul Eng ASCE 125(7): 714–724

    Article  Google Scholar 

  19. Sahay RR, Dutta S (2009) Prediction of longitudinal dispersion coefficients in natural rivers using genetic algorithm. Hydrol Res 40(6): 544–552

    Article  Google Scholar 

  20. Seo IW, Baek KO (2004) Estimation of longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 130(3): 227–236

    Article  Google Scholar 

  21. Seo IW, Cheong TS (1998) Predicting longitudinal dispersion coefficient in natural streams. J Hydraul Eng 124(1): 25–32

    Article  Google Scholar 

  22. Shepherd AJ (1997) Second-order methods for neural networks. Springer, New York

    Google Scholar 

  23. Sukhodolov AN, Nikora VI, Rowinski PM, Czernuszenko W (1997) A case study of longitudinal dispersion in small lowland rivers. Water Environ Res 69(7): 1246–1333

    Article  CAS  Google Scholar 

  24. Tayfur G, Singh VP (2005) Predicting longitudinal dispersion coefficient in natural streams by artificial neural network. J Hydraul Eng 131(11): 991–1000

    Article  Google Scholar 

  25. Taylor GI (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc R S Lond A 219: 186–203

    Article  CAS  Google Scholar 

  26. Taylor GI (1954) The dispersion of matter in turbulent flow through a pipe. Proc R S Lond UK A 223: 446–468

    Article  CAS  Google Scholar 

  27. Toprak ZF, Cigizoglu HK (2008) Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol Process 22: 4106–4129

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Ranjan Sahay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahay, R.R. Prediction of longitudinal dispersion coefficients in natural rivers using artificial neural network. Environ Fluid Mech 11, 247–261 (2011). https://doi.org/10.1007/s10652-010-9175-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-010-9175-y

Keywords

Navigation