Skip to main content
Log in

Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

In this study, we report the investigation of the gas diffusion layers (GDLs) in flexible polymer electrolyte membrane fuel cells (PEMFCs) and measure the cell assembly pressure via force sensitive resistor (FSR). We confirmed the performance of the flexible PEMFCs using carbon cloth (pristine CC), carbon paper (CP), and carbon cloth with MPL (MPL CC) as GDLs. The performance of flexible PEMFCs in the flat position with pristine CC, CP, and MPL CC are 54.2, 24.2, and 22.8 mW/cm2, respectively. On the other hand, that of flexible PEMFCs in the bent position is 94.5, 52.9, and 46.0 mW/cm2, respectively. The cell assembly pressure depending on GDLs, is confirmed via FSR measurements. The cell assembly pressure based on curvatures is higher in the order of CP, MPL CC, and pristine CC. We investigated the application of GDLs because optimization is complicated based on the bending characteristics in flexible PEMFCs. This study can be helpful for the selection of GDLs in flexible PEMFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable for creating or analyzing in this study.

References

  1. Lee, J., Seok, J. Y., Yang, M., & Kang, B. (2022). Facile fabrication of high-performance hybrid supercapacitor by one-step, self-grown copper nanopillar forest anchored with Fe3O4 anode. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(1), 213–223. https://doi.org/10.1007/s40684-021-00328-5

    Article  Google Scholar 

  2. Lee, D. C., Lee, K. J., & Kim, C. W. (2020). Optimization of a lithium-ion battery for maximization of energy density with design of experiments and micro-genetic algorithm. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(4), 829–836. https://doi.org/10.1007/s40684-019-00106-4

    Article  Google Scholar 

  3. Shin, D., Yoo, S., & Lee, Y. H. (2020). On-line water contents diagnosis of PEMFC based on measurements. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(6), 1085–1093. https://doi.org/10.1007/s40684-020-00232-4

    Article  Google Scholar 

  4. Cheema, T. A., Kim, G. M., Lee, C. Y., Kwak, M. K., Kim, H. B., & Park, C. W. (2014). Effects of composite porous gas-diffusion layers on performance of proton exchange membrane fuel cell. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 305–312. https://doi.org/10.1007/s40684-014-0037-9

    Article  Google Scholar 

  5. Yang, Z., Du, Q., Jia, Z., Yang, C., & Jiao, K. (2019). Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model. Energy, 183, 462–476. https://doi.org/10.1016/j.energy.2019.06.148

    Article  Google Scholar 

  6. Salvado, R., Loss, C., Gonçalves, R., & Pinho, P. (2012). Textile materials for the design of wearable antennas: A survey. Sensors, 12(11), 15841–15857. https://doi.org/10.3390/s121115841

    Article  Google Scholar 

  7. Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X. M. (2014). Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310–5336. https://doi.org/10.1002/adma.201400633

    Article  Google Scholar 

  8. Chang, I., Park, T., Lee, J., Lee, M. H., Ko, S. H., & Cha, S. W. (2013). Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. Journal of Materials Chemistry A, 1(30), 8541–8546. https://doi.org/10.1039/c3ta11699a

    Article  Google Scholar 

  9. Hsu, F. K., Lee, M. S., Lin, C. C., Lin, Y. K., & Hsu, W. T. (2012). A flexible portable proton exchange membrane fuel cell. Journal of Power Sources, 219, 180–187. https://doi.org/10.1016/j.jpowsour.2012.07.054

    Article  Google Scholar 

  10. Yoo, H., Kim, J., Kwon, O., Kim, H., Kim, G. H., Choi, H., Cha, H., Kim, D., Jang, S., & Park, T. (2021). Pre-bent flow-field plates for enhanced performance in flexible polymer electrolyte membrane fuel cells in curved shape. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(3), 869–878. https://doi.org/10.1007/s40684-020-00305-4

    Article  Google Scholar 

  11. Chang, I., Park, T., Lee, J., Lee, H. B., Ko, S. H., & Cha, S. W. (2016). Flexible fuel cell using stiffness-controlled endplate. International Journal of Hydrogen Energy, 41(14), 6013–6019. https://doi.org/10.1016/j.ijhydene.2016.02.087

    Article  Google Scholar 

  12. Taymaz, I., & Benli, M. (2010). Numerical study of assembly pressure effect on the performance of proton exchange membrane fuel cell. Energy, 35(5), 2134–2140. https://doi.org/10.1016/j.energy.2010.01.032

    Article  Google Scholar 

  13. Park, T., Chang, I., Jung, J. H., Lee, H. B., Ko, S. H., O’Hayre, R., Yoo, S. J., & Cha, S. W. (2017). Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector. Energy, 134, 412–419. https://doi.org/10.1016/j.energy.2017.05.197

    Article  Google Scholar 

  14. Park, T., Kang, Y. S., Jang, S., Cha, S. W., Choi, M., & Yoo, S. J. (2017). A rollable ultra-light polymer electrolyte membrane fuel cell. NPG Asia Materials, 9(5), e384–e384. https://doi.org/10.1038/am.2017.72

    Article  Google Scholar 

  15. Nitta, I., Himanen, O., & Mikkola, M. (2008). Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell. Electrochemistry Communications, 10(1), 47–51. https://doi.org/10.1016/j.elecom.2007.10.029

    Article  Google Scholar 

  16. Chen, C. Y., & Su, S. C. (2018). Effects of assembly torque on a proton exchange membrane fuel cell with stamped metallic bipolar plates. Energy, 159, 440–447. https://doi.org/10.1016/j.energy.2018.06.168

    Article  Google Scholar 

  17. Chien, C. H., Hu, Y. L., Su, T. H., Liu, H. T., Wang, C. T., Yang, P. F., & Lu, Y. (2016). Effects of bolt pre-loading variations on performance of GDL in a bolted PEMFC by 3-D FEM analysis. Energy, 113, 1174–1187. https://doi.org/10.1016/j.energy.2016.07.075

    Article  Google Scholar 

  18. Selamet, O. F., & Ergoktas, M. S. (2015). Effects of bolt torque and contact resistance on the performance of the polymer electrolyte membrane electrolyzers. Journal of Power Sources, 281, 103–113. https://doi.org/10.1016/j.jpowsour.2015.01.162

    Article  Google Scholar 

  19. Peron, J., Mani, A., Zhao, X., Edwards, D., Adachi, M., Soboleva, T., Shi, Z., Xie, Z., Navessin, T., & Holdcroft, S. (2010). Properties of Nafion® NR-211 membranes for PEMFCs. Journal of Membrane Science, 356(1–2), 44–51. https://doi.org/10.1016/j.memsci.2010.03.025

    Article  Google Scholar 

  20. Yoo, H., Kwon, O., Kim, J., Cha, H., Kim, H., Choi, H., Jeong, S., Lee, Y. J., Kim, B., Jang, G. E., Koh, J., Cho, G. Y., & Park, T. (2022). 3D-printed flexible flow-field plates for bendable polymer electrolyte membrane fuel cells. Journal of Power Sources, 532, 231273. https://doi.org/10.1016/j.jpowsour.2022.231273

    Article  Google Scholar 

  21. Kim, J., Kwon, O., Yoo, H., Choi, H., Cha, H., Kim, H., Jeong, S., Shin, M., Im, D., Jeong, Y., & Park, T. (2022). High-performance polymer electrolyte membrane fuel cells with nanoporous carbon nanotube layer in low humidity condition. Journal of Power Sources, 537, 231416. https://doi.org/10.1016/j.jpowsour.2022.231416

    Article  Google Scholar 

  22. Mason, T. J., Millichamp, J., Neville, T. P., El-Kharouf, A., Pollet, B. G., & Brett, D. J. L. (2012). Effect of clamping pressure on ohmic resistance and compression of gas diffusion layers for polymer electrolyte fuel cells. Journal of Power Sources, 219, 52–59. https://doi.org/10.1016/j.jpowsour.2012.07.021

    Article  Google Scholar 

  23. Xie, Z., Chen, G., Yu, X., Hou, M., Shao, Z., Hong, S., & Mu, C. (2015). Carbon nanotubes grown in situ on carbon paper as a microporous layer for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 40(29), 8958–8965. https://doi.org/10.1016/j.ijhydene.2015.04.129

    Article  Google Scholar 

  24. Xia, L., Ni, M., He, Q., Xu, Q., & Cheng, C. (2021). Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Applied Energy, 300, 117357. https://doi.org/10.1016/j.apenergy.2021.117357

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from an NRF grant funded by the Ministry of Science and ICT (2020R1C1C1009191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taehyun Park.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was presented at PRESM2022.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1742 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

So, Y., Yoo, H., Kim, J. et al. Investigation of Gas Diffusion Layers for Flexible Polymer Electrolyte Membrane Fuel Cells. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1007–1014 (2023). https://doi.org/10.1007/s40684-023-00502-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00502-x

Keywords

Navigation