Skip to main content
Log in

Pentoxifylline alleviates hypertension in metabolic syndrome: effect on low-grade inflammation and angiotensin system

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction and objective

Pentoxifylline is a well-tolerated drug used in treatment of vascular insufficiency. We previously showed that pentoxifylline protects from impairment in vascular reactivity in cases of metabolic syndrome. The aim of this study was to investigate the protective effect of pentoxifylline against hypertension in metabolic syndrome rats.

Methods

Metabolic syndrome was induced by feeding rats a high-fructose, high-fat and high-salt diet for 12 weeks. Pentoxifylline was administered daily (30 mg kg−1) during the last 4 weeks of the study, before blood pressure parameters were assessed at the end of study. In addition, serum levels of glucose, fructosamine, insulin, tumor necrosis factor alpha, adiponectin, and lipid profile parameters were determined. Aortic protein levels of angiotensin II and angiotensin receptor 1 were assessed by immunofluorescence.

Results

Pentoxifylline administration prevented excessive weight gain but did not affect hyperinsulinemia or hypertriglyceridemia seen in metabolic syndrome animals. In addition, pentoxifylline prevented the elevations in mean blood pressure associated with metabolic syndrome. Particularly, pentoxifylline prevented elevations in systolic, diastolic, and notch blood pressure; however, elevation in pulse blood pressure was not affected. Further, pentoxifylline alleviated the low-grade inflammation associated with metabolic syndrome, as reflected by the significantly lower serum tumor necrosis factor α and higher serum adiponectin levels metabolic syndrome animals treated with pentoxifylline. Also, pentoxifylline inhibited elevated expression of angiotensin receptor 1 in aortic tissue of metabolic syndrome animals.

Conclusion

Pentoxifylline directly alleviated hypertension in metabolic syndrome rats, at least in part, via amelioration of low-grade inflammation and inhibition of angiotensin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PTX:

Pentoxifylline

MetS:

Metabolic syndrome

BP:

Blood pressure

TNF-α:

Tumor necrosis factor alpha

ELISA:

Enzyme-linked immunosorbent assay

HDL:

Cholesterol, high-density lipoprotein cholesterol

C:

Control

References

  1. Kolovou GD, Anagnostopoulou KK, Cokkinos DV (2005) Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad Med J 81:358–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Dandona P, Aljada A, Bandyopadhyay A (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25:4–7

    Article  CAS  PubMed  Google Scholar 

  3. Navab M, Gharavi N, Watson AD (2008) Inflammation and metabolic disorders. Curr Opin Clin Nutr Metab Care 11:459–464

    Article  CAS  PubMed  Google Scholar 

  4. Frigolet ME, Torres N, Tovar AR (2013) The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem 24:2003–2015

    Article  CAS  PubMed  Google Scholar 

  5. Reilly DT, Quinton DN, Barrie WW (1987) A controlled trial of pentoxifylline (Trental 400) in intermittent claudication: clinical, haemostatic and rheological effects. N Z Med J 100:445–447

    CAS  PubMed  Google Scholar 

  6. Zabel P, Schade FU, Schlaak M (1993) Inhibition of endogenous TNF formation by pentoxifylline. Immunobiology 187:447–463

    Article  CAS  PubMed  Google Scholar 

  7. El-Bassossy HM, El-Moselhy MA, Mahmoud MF (2011) Pentoxifylline alleviates vascular impairment in insulin resistance via TNF-α inhibition. Naunyn Schmiedebergs Arch Pharmacol 384:277–285

    Article  CAS  PubMed  Google Scholar 

  8. Azhar A, El-Bassossy HM (2014) Pentoxifylline alleviates cardiac ischemia and dysfunction following experimental angina in insulin resistance. PLoS One 9:e98281

    Article  PubMed Central  PubMed  Google Scholar 

  9. Huang ZS, Lee TK (1991) Comparison of in vitro platelet aggregation and its inhibition by three antithrombotic drugs between human and guinea pig. Proc Natl Sci Counc Repub China B 15:8–14

    CAS  PubMed  Google Scholar 

  10. Weithmann KU, Just M, Schlotte V, Seiffge D (1989) Stimulatory effects of vascular prostaglandins on the antiaggregatory activities of pentoxifylline acetylsalicylic acid combinations in vitro. Vasa 18:273–276

    CAS  PubMed  Google Scholar 

  11. Lenoble G (1989) New aspects of the pharmacology of pentoxifylline. J Mal Vasc 14 (Suppl A):35–41

  12. Herskovits E, Famulari A, Tamaroff L, Gonzalez AM, Vazquez A, Dominguez R, Fraiman H, Vila J (1985) Preventive treatment of cerebral transient ischemia: comparative randomized trial of pentoxifylline versus conventional antiaggregants. Eur Neurol 24:73–81

    Article  CAS  PubMed  Google Scholar 

  13. Seiffge D, Kremer E (1984) Antithrombotic effects of pentoxifylline on laser-induced thrombi in rat mesenteric arteries. IRCS Med Sci 12:91–92

    CAS  Google Scholar 

  14. Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631

    Article  CAS  PubMed  Google Scholar 

  15. El-Bassossy H, Dsokey N, Fahmy A (2014) Characterization of vascular complications in experimental model of fructose induced metabolic syndrome. Toxicol Mech Methods, pp 1–8. doi: 10.3109/15376516.2014.945109

  16. Field KJ, White WJ, Lang CM (1993) Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim 27:258–269

    Article  CAS  PubMed  Google Scholar 

  17. Radovits T, Bomicke T, Kokeny G, Arif R, Loganathan S, Kecsan K, Korkmaz S, Barnucz E, Sandner P, Karck M, Szabo G (2009) The phosphodiesterase-5 inhibitor vardenafil improves cardiovascular dysfunction in experimental diabetes mellitus. Br J Pharmacol 156:909–919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Hassan N, El-Bassossy HM, Zakaria MNM (2013) Heme oxygenase-1 induction protects against hypertension associated with diabetes: effect on exaggerated vascular contractility. Naunyn Schmiedebergs Arch Pharmacol 386:217–226

    Article  CAS  PubMed  Google Scholar 

  19. Hassan NA, El-Bassossy HM, Mahmoud MF, Fahmy A (2014) Caffeic acid phenethyl ester, a 5-lipoxygenase enzyme inhibitor, alleviates diabetic atherosclerotic manifestations: effect on vascular reactivity and stiffness. Chem Biol Interact 213:28–36

    Article  CAS  PubMed  Google Scholar 

  20. Mahmoud MF, Hassan NA, El Bassossy HM, Fahmy A (2013) Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation. PLoS One 8:1–11

  21. El-Bassossy HM, Fahmy A, Badawy D (2011) Cinnamaldehyde protects from the hypertension associated with diabetes. Food Chem Toxicol 49:3007–3012

    Article  CAS  PubMed  Google Scholar 

  22. El-Bassossy HM, El-Fawal R, Fahmy A, Watson ML (2013) Arginase inhibition alleviates hypertension in the metabolic syndrome. Br J Pharmacol 169:693–703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Rowell LB (1993) Human cardiovascular control. Oxford University Press, New York

    Book  Google Scholar 

  24. Hulin I, Kinova S, Paulis L, Slavkovsky P, Duris I, Mravec B (2010) Diastolic blood pressure as a major determinant of tissue perfusion: potential clinical consequences. Bratislavsk_Ñ lek_Érske listy 111: 54–56

  25. Strandberg TE, Pitkala K (2003) What is the most important component of blood pressure: systolic, diastolic or pulse pressure? Curr Opin Nephrol Hypertens 12:293–297

    Article  PubMed  Google Scholar 

  26. Raptis S, Mitrakou A, Hadjidakis D, Diamantopoulos E, Anastasiou C, Fountas A, Muller R (1987) 24-h blood glucose pattern in type I and type II diabetics after oral treatment with pentoxifylline as assessed by artificial endocrine pancreas. Acta Diabetol Lat 24:181–192

    Article  CAS  PubMed  Google Scholar 

  27. Flint H, Cotter MA, Cameron NE (2000) Pentoxifylline effects on nerve conduction velocity and blood flow in diabetic rats. Int J Exp Diabetes Res 1:49–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823

    Article  PubMed  Google Scholar 

  29. Mahmoud MF, El-Nagar M, El-Bassossy HM (2012) Anti-inflammatory effect of atorvastatin on vascular reactivity and insulin resistance in fructose fed rats. Arch Pharm Res 35:155–162

    Article  CAS  PubMed  Google Scholar 

  30. Brito G, Dourado M, Polari L, Celestino D, Carvalho LP, Queiroz A, Carvalho EM, Machado PRL, Passos S (2014) Clinical and immunological outcome in cutaneous leishmaniasis patients treated with pentoxifylline. Am J Trop Med Hyg 90:617–620

    Article  CAS  PubMed  Google Scholar 

  31. Goicoechea M, Garcia de Vinuesa S, Quiroga B, Verdalles U, Barraca D, Yuste C, Panizo N, Verde E, Munoz MA, Luno J (2012) Effects of pentoxifylline on inflammatory parameters in chronic kidney disease patients: a randomized trial. J Nephrol 25:969–975

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez-Espinoza L, Rojas-Campos E, Medina-Perez M, Pena-Quintero P, Gomez-Navarro B, Cueto-Manzano AM (2012) Pentoxifylline decreases serum levels of tumor necrosis factor alpha, interleukin 6 and C-reactive protein in hemodialysis patients: results of a randomized double-blind, controlled clinical trial. Nephrol Dial Transpl 27:2023–2028

    Article  CAS  Google Scholar 

  33. Maiti R, Agrawal NK, Dash D, Pandey BL (2007) Effect of pentoxifylline on inflammatory burden, oxidative stress and platelet aggregability in hypertensive type 2 diabetes mellitus patients. Vasc Pharmacol 47:118–124

    Article  CAS  Google Scholar 

  34. Fernandes JL, de Oliveira RT, Mamoni RL, Coelho OR, Nicolau JC, Blotta MH, Serrano CV (2008) Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory activity in patients with coronary artery disease—a randomized placebo-controlled study. Atherosclerosis 196:434–442

    Article  CAS  PubMed  Google Scholar 

  35. Ghorbani A, Omidvar B, Beladi-Mousavi SS, Lak E, Vaziri S (2012) The effect of pentoxifylline on reduction of proteinuria among patients with type 2 diabetes under blockade of angiotensin system: a double blind and randomized clinical trial. Nefrologia 32:790–796

    PubMed  Google Scholar 

  36. Kang YM, Wang Y, Yang LM, Elks C, Cardinale J, Yu XJ, Zhao XF, Zhang J, Zhang LH, Yang ZM, Francis J (2010) TNF-α in hypothalamic paraventricular nucleus contributes to sympathoexcitation in heart failure by modulating AT1 receptor and neurotransmitters. Tohoku J Exp Med 222:251–263

    Article  CAS  PubMed  Google Scholar 

  37. Guggilam A, Patel KP, Haque M, Ebenezer PJ, Kapusta DR, Francis J (2008) Cytokine blockade attenuates sympathoexcitation in heart failure: cross-talk between nNOS, AT-1R and cytokines in the hypothalamic paraventricular nucleus. Eur J Heart Fail 10:625–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Chahin J, Mendez ML, Gallego E, Macia M, del Castillo N, Rivero A, Getino MA, Garcia P, Jarque A, Garcia J (2014) Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: the PREDIAN trial. J Am Soc Nephrol ASN [Epub ahead of print]

  39. Kabbesh N, Gogny M, Chatagnon G, Noireaud J, Thorin C, Desfontis JC, Mallem MY (2012) Vasodilatory effect of pentoxifylline in isolated equine digital veins. Vet J 192:368–373

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg A, Piraino BH, Kroboth PD, Weiss J (1984) Severe theophylline toxicity. Role of conservative measures, antiarrhythmic agents, and charcoal hemoperfusion. Am J Med 76:854–860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (44-140-1433). The authors, therefore, acknowledge with thanks DSR technical and financial support. The authors also thank Mr. Islam F. Nour for help in animal care and diet preparation.

Conflict of interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, A., El-Bassossy, H.M. Pentoxifylline alleviates hypertension in metabolic syndrome: effect on low-grade inflammation and angiotensin system. J Endocrinol Invest 38, 437–445 (2015). https://doi.org/10.1007/s40618-014-0209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0209-z

Keywords

Navigation