Skip to main content

Advertisement

Log in

Pentoxifylline alleviates vascular impairment in insulin resistance via TNF-α inhibition

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Deterioration of vascular reactivity plays a pivotal role in vascular complications. Pentoxifylline (PTX) is a well-tolerated drug used to treat vascular insufficiency. We investigated the protective effect of PTX against vascular impairment in insulin resistance. Insulin resistance was induced by fructose (10%) in drinking water while PTX was concurrently administered (50 mg/kg-1) for 8 weeks. Serum levels of glucose, insulin, tumor necrosis factor alpha (TNF-α) were determined. Isolated aorta reactivity to phenylephrine (PE), potassium chloride (KCl), and acetylcholine (ACh) was studied, as was nitric oxide (NO) generation and histopathology. Insulin resistance was accompanied with a significant elevation in serum TNF-α level, marked leukocytes infiltration, and endothelial pyknosis. PTX inhibited insulin resistance and prevented TNF-α elevation, leukocyte infiltration and endothelial pyknosis. Vascular dysfunction was evident in insulin resistance as increased vascular contractility to PE and decreased relaxation to ACh, whereas PTX protected against this dysfunction. Notably, in vitro incubation with TNF-α (1 ng/ml-1) increased contractility to PE and decreased relaxation to ACh while concomitant PTX (1 mM) incubation partially restored response to ACh but not to PE. Furthermore, TNF-α reduced ACh-induced NO generation, whereeas PTX restored it. In conclusion, PTX protects from the impairment in vascular reactivity in insulin resistance, by a mechanism involving TNF-α inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

NO:

nitric oxide

PTX:

pentoxifylline

PE:

phenylephrine

ROS:

reactive oxygen species

SNP:

sodium nitroprusside

TNF-α:

tumor necrosis factor alpha

References

  • Ascenzi P, di Masi A, Sciorati C, Clementi E (2010) Peroxynitrite-An ugly biofactor? Biofactors 36:264–273

    Article  PubMed  CAS  Google Scholar 

  • Balletshofer BM, Rittig K, Stock J et al (2003) Insulin resistant young subjects at risk of accelerated atherosclerosis exhibit a marked reduction in peripheral endothelial function early in life but not differences in intima-media thickness. Atherosclerosis 171:303–309

    Article  PubMed  CAS  Google Scholar 

  • Baraka AM, Guemei A, Gawad HA (2010) Role of modulation of vascular endothelial growth factor and tumor necrosis factor-alpha in gastric ulcer healing in diabetic rats. Biochem Pharmacol 79:1634–1639

    Article  PubMed  CAS  Google Scholar 

  • Barham D, Trinder P (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145

    Article  PubMed  CAS  Google Scholar 

  • Busija DW, Miller AW, Katakam P, Erdos B (2006) Adverse effects of reactive oxygen species on vascular reactivity in insulin resistance. Antioxid Redox Signal 8:1131–1140

    Article  PubMed  CAS  Google Scholar 

  • Carmassi F, De Negri F, Fioriti R et al (2005) Insulin resistance causes impaired vasodilation and hypofibrinolysis in young women with polycystic ovary syndrome. Thromb Res 116:207–214

    Article  PubMed  CAS  Google Scholar 

  • Chen H (2006) Cellular inflammatory responses: novel insights for obesity and insulin resistance. Pharmacol Res 53:469–477

    Article  PubMed  CAS  Google Scholar 

  • De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974

    Article  PubMed  Google Scholar 

  • DeFronzo RA, Del Prato S (2009) Insulin resistance and diabetes mellitus. J Diabetes Complicat 10:243–245

    Article  Google Scholar 

  • Doherty GM, Jensen JC, Alexander HR, Buresh CM, Norton JA (1991) Pentoxifylline suppression of tumor necrosis factor gene transcription. Surgery 110:192–198

    PubMed  CAS  Google Scholar 

  • El-Bassossy HM, El-Maraghy NN, El-Fayoumi HM, Watson ML (2009) Haem oxygenase-1 induction protects against tumour necrosis factor alpha impairment of endothelial-dependent relaxation in rat isolated pulmonary artery. Br J Pharmacol 158:1527–1535

    Article  PubMed  CAS  Google Scholar 

  • El-Ghoneimi A, Cursio R, Schmid-Alliana A et al (2007) Pentoxifylline inhibits liver expression of tumor necrosis factor alpha mRNA following normothermic ischemia-reperfusion. HPB (Oxford) 9:112–119

    Google Scholar 

  • Erdos B, Miller AW, Busija DW (2002) Impaired endothelium-mediated relaxation in isolated cerebral arteries from insulin-resistant rats. Am J Physiol Heart Circ Physiol 282:H2060–H2065

    PubMed  CAS  Google Scholar 

  • Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    Article  PubMed  CAS  Google Scholar 

  • Fuller CJ, Agil A, Lender D, Jialal I (2007) Superoxide production and LDL oxidation by diabetic neutrophils. J Diabetes Complicat 10:206–210

    Article  Google Scholar 

  • Giardina JB, Green GM, Cockrell KL, Granger JP, Khalil RA (2002) TNF-alpha enhances contraction and inhibits endothelial NO-cGMP relaxation in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol 283:R130–R143

    PubMed  CAS  Google Scholar 

  • Haddad JJ, Land SC, Tarnow-Mordi WO, Zembala M, Kowalczyk D, Lauterbach R (2002) Immunopharmacological potential of selective phosphodiesterase inhibition. I. differential regulation of lipopolysaccharide-mediated proinflammatory cytokine (interleukin-6 and tumor necrosis factor-alpha ) biosynthesis in alveolar epithelial cells. J Pharmacol Exp Ther 300:559–566

    Article  PubMed  CAS  Google Scholar 

  • Hui YH, Huang NH, Ebbert L et al (2007) Pharmacokinetic comparisons of tail-bleeding with cannula- or retro-orbital bleeding techniques in rats using six marketed drugs. J Pharmacol Toxicol Methods 56:256–264

    Article  PubMed  CAS  Google Scholar 

  • Iyer SN, Katovich MJ (1996) Vascular reactivity to phenylephrine and angiotensin II in hypertensive rats associated with insulin resistance. Clin Exp Hypertens 18:227–242

    Article  PubMed  CAS  Google Scholar 

  • Manfredi AA, Sabbadini MG, Ferri L, Bianchi ME, Rovere-Querini P (2004) Mechanisms of systemic vasculitis. Drug Discov Today: Dis Mech 1:297–302

    Article  CAS  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Lauterbach R, Bobek M (2000) Differential effects of pentoxifylline, a non-specific phosphodiesterase inhibitor, on the production of IL-10, IL-12 p40 and p35 subunits by murine peritoneal macrophages. Immunopharmacol 49:335–343

    Article  CAS  Google Scholar 

  • Marks JB, Raskin P (2003) Cardiovascular risk in diabetes: a brief review. J Diabetes Complicat 14:108–115

    Article  Google Scholar 

  • McKendrick JD, Salas E, Dube GP, Murat J, Russell JC, Radomski MW (1998) Inhibition of nitric oxide generation unmasks vascular dysfunction in insulin-resistant, obese JCR:LA-cp rats. Br J Pharmacol 124:361–369

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Hoidal JR, Mukherjee TK (2006) Role of TNFalpha in pulmonary pathophysiology. Respir Res 7:125

    Article  PubMed  Google Scholar 

  • de Oliveira IS Jr, Maganhin CC, Ferraz Carbonel AA et al (2008) Effects of pentoxifylline on TNF-alpha and lung histopathology in HCL-induced lung injury. Clinics (Sao Paulo) 63:77–84

    Google Scholar 

  • Pickup JC (2004) Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27:813–823

    Article  PubMed  Google Scholar 

  • Raskin P (2010) Risk factors for the development of diabetic complications. J Diabetes Complicat 8:195–200

    Article  Google Scholar 

  • Sandoval J, Escobar J, Pereda J et al (2009) Pentoxifylline prevents loss of PP2A phosphatase activity and recruitment of histone acetyltransferases to proinflammatory genes in acute pancreatitis. J Pharmacol Exp Ther 331:609–617

    Article  PubMed  CAS  Google Scholar 

  • Shaw SM, Shah MKH, Williams SG, Fildes JE (2009) Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail 11:113–118

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ayajiki K, Nishio Y, Sugaya T, Kashiwagi A, Okamura T (2004) Evidence for a causal role of the renin-angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43:255–262

    Article  PubMed  CAS  Google Scholar 

  • Smith AR, Visioli F, Frei B, Hagen TM (2006) Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell 5:391–400

    Article  PubMed  CAS  Google Scholar 

  • Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78:539–552

    Article  PubMed  CAS  Google Scholar 

  • Takagawa Y, Berger ME, Hori MT, Tuck ML, Golub MS (2001) Long-term fructose feeding impairs vascular relaxation in rat mesenteric arteries. Am J Hypertens 14:811–817

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Bhanot S, Yao L, McNeill JH (1996) Defective endothelium-dependent relaxation in fructose-hypertensive rats. Am J Hypertens 9:370–376

    Article  PubMed  CAS  Google Scholar 

  • Visioli F (1999) Editorial: tumour necrosis factor as a potential target for the treatment of congestive heart failure. Pharmacol Res 40:91

    Article  PubMed  CAS  Google Scholar 

  • Viswanad B, Srinivasan K, Kaul CL, Ramarao P (2006) Effect of tempol on altered angiotensin II and acetylcholine-mediated vascular responses in thoracic aorta isolated from rats with insulin resistance. Pharmacol Res 53:209–215

    Article  PubMed  CAS  Google Scholar 

  • Wimalasundera R, Fexby S, Regan L, Hughes AD (2003) Effect of tumour necrosis factor-alpha and interleukin 1 beta on endothelium-dependent relaxation in rat mesenteric resistance arteries in vitro. Br J Pharmacol 138:1285–1294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Mohamed Metwally, Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Egypt, for assistance in histopathology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hany M. El-Bassossy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bassossy, H.M., El-Moselhy, M.A. & Mahmoud, M.F. Pentoxifylline alleviates vascular impairment in insulin resistance via TNF-α inhibition. Naunyn-Schmiedeberg's Arch Pharmacol 384, 277–285 (2011). https://doi.org/10.1007/s00210-011-0669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0669-z

Keywords

Navigation