Skip to main content

Advertisement

Log in

Cell Death: a Molecular Perspective

  • Molecular Biology of Cell Death and Aging (N Razdan and N Muhammad, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

One of the vital aspects of a cell is cell death to continue their normal cell turnover, propagation, proper development, and the maintenance of the immune system. Cell death is an essential process in the body as it promotes the removal of unwanted cells. It is the programmed culling of cells in entire eukaryotic development processes to survive and progress for the next generation. Molecular aberration in the process of apoptosis may have pathological manifestations, including cancer, neurodegenerative disorders, autoimmune disease, and ischemic damage. Classically, cell death is categorized primarily into four different types: apoptosis, autophagy, necrosis, and entosis; depending on cellular and molecular signatures governing the pathway involved. The purpose of this review is to compare and contrast the recent literature on cell death and to familiarize with the current state of knowledge on this topic. In summary, the hallmarks of various modes of cell death are thoroughly explained along with the other types of cell death such as ferroptosis, pyroptosis, necroptosis, and lysosomal-dependent cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

DAMPs:

Damage-associated molecular patterns

TNF-α:

Tumor necrosis factor-α

NK:

Natural killer cells

PCD:

Programmed cell death

IAP:

Inhibitors of apoptosis proteins

BIR:

Baculovirus IAP repeat

RING:

C-terminal Ring zinc-finger domain

CARD:

Caspase recruitment domain

UBC:

C-terminal ubiquitin-conjugating domain

LIMP:

Lysosomal integral membrane protein

LAMP:

Lysosomal associated membrane protein

LMP:

Lysosomal membrane permeabilization

Hsp70:

Heat shock protein 70

ROS:

Reactive oxygen species

ADCD:

Autophagy-dependent cell death

RIPK:

Receptor-interacting protein kinase

MLKL:

Mixed lineage kinase domain-like protein

CrmA:

Cytokine response modifier

LPS:

Lipopolysaccharide

FADD:

Fas-associated death domain

BID:

BH3-interacting domain death agonist

MON-P53:

Metal organic network-P53

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

Mcl-1:

Myeloid cell leukemia sequence 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development homeostasis and disease. Cell. 2002;109(2):S97–107. https://doi.org/10.1016/s0092-8674(02)00704-3.

    Article  PubMed  CAS  Google Scholar 

  2. Sedger LM, Katewa A, Pettersen AK, et al. Extreme lymphoproliferative disease and fatal autoimmune thrombocytopenia in FasL and TRAIL double-deficient mice. Blood. 2010;115(16):3258–68. https://doi.org/10.1182/blood-2009-11-255497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lamhamedi-Cherradi S-E, Zheng S-J, Maguschak KA, Peschon J, Chen YH. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice. Nat Immunol. 2003;4(3):255–60. https://doi.org/10.1038/ni894.

    Article  PubMed  CAS  Google Scholar 

  4. Su JH, Deng G, Cotman CW. Bax protein expression is increased in Alzheimer’s brain: correlations with DNA damage Bcl-2 expression and brain pathology. J Neuropathol Exp Neurol. 1997;56(1):86–93. https://doi.org/10.1097/00005072-199701000-00009.

    Article  PubMed  CAS  Google Scholar 

  5. Lu T, Aron L, Zullo J, et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature. 2014;507(7493):448–54. https://doi.org/10.1038/nature13163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol. 2020;36(2):145–64. https://doi.org/10.1007/s10565-019-09496-2.

    Article  PubMed  CAS  Google Scholar 

  7. Denton D, Kumar S. Autophagy-dependent cell death. Cell Death Differ. 2019;26(4):605–16. https://doi.org/10.1038/s41418-018-0252-y.

    Article  PubMed  CAS  Google Scholar 

  8. • Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4This review provided an updated classification of cell death subroutines focusing on mechanistic and essential aspects of the process.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saïd-Sadier N, Ojcius DM. Alarmins inflammasomes and immunity. Biomed J. 2012;35(6):437–49. https://doi.org/10.4103/2319-4170.104408.

    Article  PubMed  Google Scholar 

  10. Zhou M, Aziz M, Wang P. Damage-associated molecular patterns as double-edged swords in sepsis. Antioxid Redox Signal. 2021;35(15):1308–23. https://doi.org/10.1089/ars.2021.0008 Published online March 30, 2021.

    Article  PubMed  CAS  Google Scholar 

  11. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7(12):a006080. https://doi.org/10.1101/cshperspect.a006080.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carella F, Feist SW, Bignell JP, De Vico G. Comparative pathology in bivalves: aetiological agents and disease processes. J Invertebr Pathol. 2015;131:107–20. https://doi.org/10.1016/j.jip.2015.07.012.

    Article  PubMed  CAS  Google Scholar 

  13. Yan G, Elbadawi M, Efferth T. Multiple cell death modalities and their key features (Review). World Acad Sci J. 2020;2(2):39–48. https://doi.org/10.3892/wasj.2020.40 Published online March 11, 2020.

    Article  Google Scholar 

  14. Shalini S, Dorstyn L, Dawar S, Kumar S. Old new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526–39. https://doi.org/10.1038/cdd.2014.216.

    Article  PubMed  CAS  Google Scholar 

  15. Chen Y, Hua Y, Li X, Arslan IM, Zhang W, Meng G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol. 2020;11:42. https://doi.org/10.3389/fphar.2020.00042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues. Teratology. 1973;7(3):253–66. https://doi.org/10.1002/tera.1420070306.

    Article  PubMed  CAS  Google Scholar 

  17. White C, Li C, Yang J, et al. The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol. 2005;7(10):1021–8. https://doi.org/10.1038/ncb1302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–57. https://doi.org/10.1038/bjc.1972.33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15(2):81–94. https://doi.org/10.1038/nrm3735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene. 2006;25(34):4798–811. https://doi.org/10.1038/sj.onc.1209608.

    Article  PubMed  CAS  Google Scholar 

  21. Ke FFS, Vanyai HK, Cowan AD, et al. Embryogenesis and adult life in the absence of intrinsic apoptosis effectors BAX BAK and BOK. Cell. 2018;173(5):1217–30. https://doi.org/10.1016/j.cell.2018.04.036.

    Article  PubMed  CAS  Google Scholar 

  22. Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 1995;270(5233):96–9. https://doi.org/10.1126/science.270.5233.96.

    Article  PubMed  CAS  Google Scholar 

  23. Little GH, Flores A. Inhibition of programmed cell death by catalase and phenylalanine methyl ester. Comp Biochem Physiol Pt A Physiol. 1993;105(1):79–83. https://doi.org/10.1016/0300-9629(93)90176-5.

    Article  CAS  Google Scholar 

  24. Campbell WC, Canale ST, Beaty JH. Campbell’s Operative Orthopaedics. 11th ed. Mosby: Elsevier; 2008.

    Google Scholar 

  25. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516. https://doi.org/10.1080/01926230701320337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–44. https://doi.org/10.7314/APJCP.2015.16.6.2129.

    Article  PubMed  Google Scholar 

  27. Kesavardhana S, Malireddi RKS, Kanneganti T-D. Caspases in cell death inflammation and pyroptosis. Annu Rev Immunol. 2020;38(1):567–95. https://doi.org/10.1146/annurev-immunol-073119-095439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Poon IKH, Lucas CD, Rossi AG, Ravichandran KS. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 2014;14(3):166–80. https://doi.org/10.1038/nri3607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Los M, de Craen MV, Penning LC, et al. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature. 1995;375(6526):81–3. https://doi.org/10.1038/375081a0.

    Article  PubMed  CAS  Google Scholar 

  30. Sabbatini P, Han J, Chiou SK, Nicholson DW, White E. Interleukin 1 beta converting enzyme-like proteases are essential for p53-mediated transcriptionally dependent apoptosis. Cell Growth Differ. 1997;8(6):643–53.

    PubMed  CAS  Google Scholar 

  31. Rathore S, Datta G, Kaur I, Malhotra P, Mohmmed A. Disruption of cellular homeostasis induces organelle stress and triggers apoptosis like cell-death pathways in malaria parasite. Cell Death Dis. 2015;6(7):e1803. https://doi.org/10.1038/cddis.2015.142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004;5(11):897–907. https://doi.org/10.1038/nrm1496.

    Article  PubMed  CAS  Google Scholar 

  33. Cullen SP, Martin SJ. Mechanisms of granule-dependent killing. Cell Death Differ. 2008;15(2):251–62. https://doi.org/10.1038/sj.cdd.4402244.

    Article  PubMed  CAS  Google Scholar 

  34. Osińska I, Popko K, Demkow U. Perforin: an important player in immune response. Cent Eur J Immunol. 2014;1:109–15. https://doi.org/10.5114/ceji.2014.42135.

    Article  CAS  Google Scholar 

  35. Brentnall M, Rodriguez-Menocal L, De Guevara R, Cepero E, Boise LH. Caspase-9 caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;14(1):32. https://doi.org/10.1186/1471-2121-14-32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Morgan CW, Julien O, Unger EK, Shah NM, Wells JA. Turning ON Caspases with Genetics and Small Molecules. In: Ashkenazi A, Yuan J, Wells JA, editors. Methods in Enzymology, vol. 544. Amsterdam: Elsevier; 2014. p. 179–213. https://doi.org/10.1016/B978-0-12-417158-9.00008-X.

    Chapter  Google Scholar 

  37. Ke B, Tian M, Li J, Liu B, He G. Targeting programmed cell death using small-molecule compounds to improve potential cancer therapy: anticancer compounds targeting cell death. Med Res Rev. 2016;36(6):983–1035. https://doi.org/10.1002/med.21398.

    Article  PubMed  Google Scholar 

  38. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8(4):603–19. https://doi.org/10.18632/aging.100934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Derakhshan A, Chen Z, Van Waes C. Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res. 2017;23(6):1379–87. https://doi.org/10.1158/1078-0432.CCR-16-2172.

    Article  PubMed  CAS  Google Scholar 

  40. Silke J, Meier P. Inhibitor of Apoptosis (IAP) Proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 2013;5(2):a008730. https://doi.org/10.1101/cshperspect.a008730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liang J, Zhao W, Tong P, et al. Comprehensive molecular characterization of inhibitors of apoptosis proteins (IAPs) for therapeutic targeting in cancer. BMC Med Genomics. 2020;13(1):7. https://doi.org/10.1186/s12920-020-0661-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol. 2001;2(7):REVIEWS3009. https://doi.org/10.1186/gb-2001-2-7-reviews3009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Land WG. Cell-autonomous (cell-intrinsic) stress responses. In: Damage-associated molecular patterns in human diseases. Cham: Springer International Publishing; 2018. p. 377–426. https://doi.org/10.1007/978-3-319-78655-1_18.

    Chapter  Google Scholar 

  44. Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J. 2017;36(13):1811–36. https://doi.org/10.15252/embj.201796697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. • Yim WW-Y, Mizushima N. Lysosome biology in autophagy Cell Discov. 2020;6(1):6. https://doi.org/10.1038/s41421-020-0141-7The article provides a summary of current understanding on the behaviour of lysosomes during autophagy.

    Article  PubMed  CAS  Google Scholar 

  46. Wang F, Salvati A, Boya P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol. 2018;8(4):170271. https://doi.org/10.1098/rsob.170271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li W, Li J, Bao J. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69(7):1125–36. https://doi.org/10.1007/s00018-011-0865-5.

    Article  PubMed  CAS  Google Scholar 

  48. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012;22(8):407–17. https://doi.org/10.1016/j.tcb.2012.05.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol. 2018;20(5):521–7. https://doi.org/10.1038/s41556-018-0092-5.

    Article  PubMed  CAS  Google Scholar 

  50. Klionsky DJ, Schulman BA. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol. 2014;21(4):336–45. https://doi.org/10.1038/nsmb.2787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting autophagy to overcome human diseases. IJMS. 2019;20(3):725. https://doi.org/10.3390/ijms20030725.

    Article  PubMed Central  CAS  Google Scholar 

  52. Shen H-M, Codogno P. Autophagic cell death: Loch Ness monster or endangered species? Autophagy. 2011;7(5):457–65. https://doi.org/10.4161/auto.7.5.14226.

    Article  PubMed  CAS  Google Scholar 

  53. Bialik S, Dasari SK, Kimchi A. Autophagy-dependent cell death – where how and why a cell eats itself to death. J Cell Sci. 2018;131(18):jcs215152. https://doi.org/10.1242/jcs.215152.

    Article  PubMed  CAS  Google Scholar 

  54. Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci. 1994;107(Pt 10):2691–704.

    Article  CAS  PubMed  Google Scholar 

  55. Giusti C, Tresse E, Luciani M-F, Golstein P. Autophagic cell death: Analysis in Dictyostelium. Biochim Biophys Acta Mol Cell Res. 2009;1793(9):1422–31. https://doi.org/10.1016/j.bbamcr.2008.12.005.

    Article  CAS  Google Scholar 

  56. Denton D, Aung-Htut MT, Kumar S. Developmentally programmed cell death in Drosophila. Biochim Biophys Acta Mol Cell Res. 2013;1833(12):3499–506. https://doi.org/10.1016/j.bbamcr.2013.06.014.

    Article  CAS  Google Scholar 

  57. Ginet V, Spiehlmann A, Rummel C, et al. Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy. 2014;10(5):846–60. https://doi.org/10.4161/auto.28264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Matsui Y, Takagi H, Qu X, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22. https://doi.org/10.1161/01.RES.0000261924.76669.36.

    Article  PubMed  CAS  Google Scholar 

  59. Chen H-Y, White E. Role of autophagy in cancer prevention. Cancer Prev Res. 2011;4(7):973–83. https://doi.org/10.1158/1940-6207.CAPR-10-0387.

    Article  CAS  Google Scholar 

  60. Ha S, Jeong S-H, Yi K, et al. Phosphorylation of p62 by AMP-activated protein kinase mediates autophagic cell death in adult hippocampal neural stem cells. J Biol Chem. 2017;292(33):13795–808. https://doi.org/10.1074/jbc.M117.780874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ouyang L, Zhang L, Liu J, et al. Discovery of a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor that induces AMP-activated protein kinase-modulated autophagy-associated cell death in breast cancer. J Med Chem. 2017;60(24):9990–10012. https://doi.org/10.1021/acs.jmedchem.7b00275.

    Article  PubMed  CAS  Google Scholar 

  62. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98(2):813–80. https://doi.org/10.1152/physrev.00011.2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang Y, Zhan X, Xiong J, et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep. 2018;8(1):8720. https://doi.org/10.1038/s41598-018-26978-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kato A, Tatsumi Y, Yako H, et al. Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res. 2019;147:26–32. https://doi.org/10.1016/j.neures.2018.11.004.

    Article  PubMed  CAS  Google Scholar 

  65. Sendoel A, Hengartner MO. Apoptotic cell death under hypoxia. Physiology. 2014;29(3):168–76. https://doi.org/10.1152/physiol.00016.2013.

    Article  PubMed  CAS  Google Scholar 

  66. Thornton C, Leaw B, Mallard C, Nair S, Jinnai M, Hagberg H. Cell death in the developing brain after hypoxia-ischemia. Front Cell Neurosci. 2017;11:248. https://doi.org/10.3389/fncel.2017.00248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Narayanan KB, Ali M, Barclay BJ, et al. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death. CARCIN. 2015;36(Suppl 1):S89–110. https://doi.org/10.1093/carcin/bgv032.

    Article  CAS  Google Scholar 

  68. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9):907–17. https://doi.org/10.1038/ni.3253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mandke P, Vasquez KM. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair. 2019;83:102701. https://doi.org/10.1016/j.dnarep.2019.102701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. He S-J, Cheng J, Feng X, Yu Y, Tian L, Huang Q. The dual role and therapeutic potential of high-mobility group box 1 in cancer. Oncotarget. 2017;8(38):64534–50. https://doi.org/10.18632/oncotarget.17885.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tripathi A, Shrinet K, Kumar A. HMGB1 protein as a novel target for cancer. Toxicol Rep. 2019;6:253–61. https://doi.org/10.1016/j.toxrep.2019.03.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Calderwood SK, Gong J, Murshid A. Extracellular HSPs: the complicated roles of extracellular HSPs in immunity. Front Immunol. 2016;7:159. https://doi.org/10.3389/fimmu.2016.00159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Rock KL, Kono H. The inflammatory response to cell death. Annu Rev Pathol. 2008;3:99–126. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tsan M-F. Toll-like receptors inflammation and cancer. Semin Cancer Biol. 2006;16(1):32–7. https://doi.org/10.1016/j.semcancer.2005.07.004.

    Article  PubMed  CAS  Google Scholar 

  75. Krysko DV, Leybaert L, Vandenabeele P, D’Herde K. Gap junctions and the propagation of cell survival and cell death signals. Apoptosis. 2005;10(3):459–69. https://doi.org/10.1007/s10495-005-1875-2.

    Article  PubMed  CAS  Google Scholar 

  76. Vanden Berghe T, Kalai M, Denecker G, Meeus A, Saelens X, Vandenabeele P. Necrosis is associated with IL-6 production but apoptosis is not. Cell Signal. 2006;18(3):328–35. https://doi.org/10.1016/j.cellsig.2005.05.003.

    Article  PubMed  CAS  Google Scholar 

  77. Ray CA, Pickup DJ. The mode of death of pig kidney cells infected with cowpox virus is governed by the expression of the crmA gene. Virology. 1996;217(1):384–91. https://doi.org/10.1006/viro.1996.0128.

    Article  PubMed  CAS  Google Scholar 

  78. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135–47. https://doi.org/10.1038/nrm3737.

    Article  CAS  Google Scholar 

  79. Sun X, Lee J, Navas T, Baldwin DT, Stewart TA, Dixit VM. RIP3 a novel apoptosis-inducing kinase. J Biol Chem. 1999;274(24):16871–5.

    Article  CAS  PubMed  Google Scholar 

  80. Dondelinger Y, Declercq W, Montessuit S, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–81. https://doi.org/10.1016/j.celrep.2014.04.026.

    Article  PubMed  CAS  Google Scholar 

  81. Hildebrand JM, Tanzer MC, Lucet IS, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA. 2014;111(42):15072–7. https://doi.org/10.1073/pnas.1408987111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Murphy JM, Czabotar PE, Hildebrand JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39(3):443–53. https://doi.org/10.1016/j.immuni.2013.06.018.

    Article  PubMed  CAS  Google Scholar 

  83. O’Donnell MA, Perez-Jimenez E, Oberst A, et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol. 2011;13(12):1437–42. https://doi.org/10.1038/ncb2362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 2013;14(11):727–36. https://doi.org/10.1038/nrm3683.

    Article  PubMed  CAS  Google Scholar 

  85. Vercammen D, Beyaert R, Denecker G, et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998;187(9):1477–85. https://doi.org/10.1084/jem.187.9.1477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Holler N, Zaru R, Micheau O, et al. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489–95. https://doi.org/10.1038/82732.

    Article  PubMed  CAS  Google Scholar 

  87. Cho Y, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chen D, Yu J, Zhang L. Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta Rev Cancer. 2016;1865(2):228–36. https://doi.org/10.1016/j.bbcan.2016.03.003.

    Article  CAS  Google Scholar 

  89. Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38(2):209–23. https://doi.org/10.1016/j.immuni.2013.02.003.

    Article  PubMed  CAS  Google Scholar 

  90. Petrie EJ, Sandow JJ, Lehmann WIL, et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 2019;28(13):3309–19. https://doi.org/10.1016/j.celrep.2019.08.055.

    Article  PubMed  CAS  Google Scholar 

  91. Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants – past present and future. Cytokine Growth Factor Rev. 2014;25(4):453–72. https://doi.org/10.1016/j.cytogfr.2014.07.016.

    Article  PubMed  CAS  Google Scholar 

  92. Kalliolias GD, Ivashkiv LB. TNF biology pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12(1):49–62. https://doi.org/10.1038/nrrheum.2015.169.

    Article  PubMed  CAS  Google Scholar 

  93. Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1(2):112–9. https://doi.org/10.1038/nchembio711.

    Article  PubMed  CAS  Google Scholar 

  94. Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21. https://doi.org/10.1038/nchembio.83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell. 2009;137(6):1100–11. https://doi.org/10.1016/j.cell.2009.05.021.

    Article  PubMed  CAS  Google Scholar 

  96. Zhang D-W, Shao J, Lin J, et al. RIP3 an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–6. https://doi.org/10.1126/science.1172308.

    Article  PubMed  CAS  Google Scholar 

  97. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal. 2010;3(115):re4. https://doi.org/10.1126/scisignal.3115re4.

    Article  PubMed  CAS  Google Scholar 

  98. Kaiser WJ, Upton JW, Long AB, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471(7338):368–72. https://doi.org/10.1038/nature09857.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature. 2011;471(7338):363–7. https://doi.org/10.1038/nature09852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Zhang H, Zhou X, McQuade T, Li J, Chan FK-M, Zhang J. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature. 2011;471(7338):373–6. https://doi.org/10.1038/nature09878.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018;15(1):199. https://doi.org/10.1186/s12974-018-1235-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Pop C, Oberst A, Drag M, et al. FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J. 2011;433(3):447–57. https://doi.org/10.1042/BJ20101738.

    Article  PubMed  CAS  Google Scholar 

  103. Xie T, Peng W, Yan C, Wu J, Gong X, Shi Y. Structural insights into RIP3-mediated necroptotic signaling. Cell Rep. 2013;5(1):70–8. https://doi.org/10.1016/j.celrep.2013.08.044.

    Article  PubMed  CAS  Google Scholar 

  104. Dondelinger Y, Aguileta MA, Goossens V, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 2013;20(10):1381–92. https://doi.org/10.1038/cdd.2013.94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2014;16(1):55–65. https://doi.org/10.1038/ncb2883.

    Article  PubMed  CAS  Google Scholar 

  106. Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57–80. https://doi.org/10.1146/annurev-physiol-021014-071649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta Mol Cell Res. 2009;1793(4):615–24. https://doi.org/10.1016/j.bbamcr.2008.12.022.

    Article  CAS  Google Scholar 

  108. Mindell JA. Lysosomal Acidification Mechanisms. Annu Rev Physiol. 2012;74(1):69–86. https://doi.org/10.1146/annurev-physiol-012110-142317.

    Article  PubMed  CAS  Google Scholar 

  109. Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10(9):623–35. https://doi.org/10.1038/nrm2745.

    Article  PubMed  CAS  Google Scholar 

  110. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51. https://doi.org/10.1038/onc.2008.310.

    Article  PubMed  CAS  Google Scholar 

  111. Mrschtik M, Ryan KM. Lysosomal proteins in cell death and autophagy. FEBS J. 2015;282(10):1858–70. https://doi.org/10.1111/febs.13253.

    Article  PubMed  CAS  Google Scholar 

  112. Appelqvist H, Sandin L, Björnström K, et al. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content. PLoS ONE. 2012;7(11):e50262. https://doi.org/10.1371/journal.pone.0050262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Li W, Yuan X, Nordgren G, et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 2000;470(1):35–9. https://doi.org/10.1016/S0014-5793(00)01286-2.

    Article  PubMed  CAS  Google Scholar 

  114. Berg T, Gjøen T, Bakke O. Physiological functions of endosomal proteolysis. Biochem J. 1995;307(Pt 2):313–26. https://doi.org/10.1042/bj3070313.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Claus V, Jahraus A, Tjelle T, et al. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages: enrichment of cathepsin H in early endosomes. J Biol Chem. 1998;273(16):9842–51. https://doi.org/10.1074/jbc.273.16.9842.

    Article  PubMed  CAS  Google Scholar 

  116. Öllinger K, Brunk UT. Cellular injury induced by oxidative stress is mediated through lysosomal damage. Free Radic Biol Med. 1995;19(5):565–74. https://doi.org/10.1016/0891-5849(95)00062-3.

    Article  PubMed  Google Scholar 

  117. Kurz T, Terman A, Gustafsson B, Brunk UT. Lysosomes in iron metabolism ageing and apoptosis. Histochem Cell Biol. 2008;129(4):389–406. https://doi.org/10.1007/s00418-008-0394-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Kurz T, Eaton JW, Brunk UT. Redox activity within the lysosomal compartment: implications for aging and apoptosis. Antioxid Redox Signal. 2010;13(4):511–23. https://doi.org/10.1089/ars.2009.3005.

    Article  PubMed  CAS  Google Scholar 

  119. Groth-Pedersen L, Ostenfeld MS, Høyer-Hansen M, Nylandsted J, Jäättelä M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res. 2007;67(5):2217–25. https://doi.org/10.1158/0008-5472.CAN-06-3520.

    Article  PubMed  CAS  Google Scholar 

  120. Quinn PJ. Is the distribution of -tocopherol in membranes consistent with its putative functions? Biochem (Moscow). 2004;69(1):58–66. https://doi.org/10.1023/B:BIRY.0000016352.88061.02.

    Article  CAS  Google Scholar 

  121. Sahara S, Yamashima T. Calpain-mediated Hsp70.1 cleavage in hippocampal CA1 neuronal death. Biochem Biophys Res Commun. 2010;393(4):806–11. https://doi.org/10.1016/j.bbrc.2010.02.087.

    Article  PubMed  CAS  Google Scholar 

  122. Arnandis T, Ferrer-Vicens I, García-Trevijano ER, et al. Calpains mediate epithelial-cell death during mammary gland involution: mitochondria and lysosomal destabilization. Cell Death Differ. 2012;19(9):1536–48. https://doi.org/10.1038/cdd.2012.46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Huang W-C, Lin Y-S, Chen C-L, Wang C-Y, Chiu W-H, Lin C-F. Glycogen synthase kinase-3β mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. J Pharmacol Exp Ther. 2009;329(2):524–31. https://doi.org/10.1124/jpet.108.148122.

    Article  PubMed  CAS  Google Scholar 

  124. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. 2004;23(16):2881–90. https://doi.org/10.1038/sj.onc.1207512.

    Article  PubMed  CAS  Google Scholar 

  125. Bechara A, Barbosa CMV, Paredes-Gamero EJ, et al. Palladacycle (BPC) antitumour activity against resistant and metastatic cell lines: the relationship with cytosolic calcium mobilisation and cathepsin B activity. Eur J Med Chem. 2014;79:24–33. https://doi.org/10.1016/j.ejmech.2014.03.073.

    Article  PubMed  CAS  Google Scholar 

  126. Bové J, Martínez-Vicente M, Dehay B, et al. BAX channel activity mediates lysosomal disruption linked to Parkinson disease. Autophagy. 2014;10(5):889–900. https://doi.org/10.4161/auto.28286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C. Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med. 2007;42(9):1305–16. https://doi.org/10.1016/j.freeradbiomed.2006.12.030.

    Article  PubMed  CAS  Google Scholar 

  128. Gómez-Sintes R, Ledesma MD, Boya P. Lysosomal cell death mechanisms in aging. Ageing Res Rev. 2016;32:150–68. https://doi.org/10.1016/j.arr.2016.02.009.

    Article  PubMed  CAS  Google Scholar 

  129. Turk V, Turk B, Turk D. Lysosomal cysteine proteases: facts and opportunities. EMBO J. 2001;20(17):4629–33. https://doi.org/10.1093/emboj/20.17.4629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Turk V, Stoka V, Vasiljeva O, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta Proteins Proteom. 2012;1824(1):68–88. https://doi.org/10.1016/j.bbapap.2011.10.002.

    Article  CAS  Google Scholar 

  131. Vasiljeva O, Turk B. Dual contrasting roles of cysteine cathepsins in cancer progression: Apoptosis versus tumour invasion. Biochimie. 2008;90(2):380–6. https://doi.org/10.1016/j.biochi.2007.10.004.

    Article  PubMed  CAS  Google Scholar 

  132. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833(12):3481–98. https://doi.org/10.1016/j.bbamcr.2013.06.026.

    Article  PubMed  CAS  Google Scholar 

  133. Kim Y-N, Koo KH, Sung JY, Yun U-J, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol. 2012;2012:1–11. https://doi.org/10.1155/2012/306879.

    Article  CAS  Google Scholar 

  134. Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J. 1999;339(Pt 3):481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9(5):701–6. https://doi.org/10.1016/s0955-0674(97)80124-x.

    Article  PubMed  CAS  Google Scholar 

  136. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124(4):619–26. https://doi.org/10.1083/jcb.124.4.619.

    Article  PubMed  CAS  Google Scholar 

  137. Giancotti FG. Complexity and specificity of integrin signalling. Nat Cell Biol. 2000;2(1):E13-14. https://doi.org/10.1038/71397.

    Article  PubMed  CAS  Google Scholar 

  138. Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev. 2005;24(3):425–39. https://doi.org/10.1007/s10555-005-5134-3.

    Article  PubMed  Google Scholar 

  139. Brassard DL, Maxwell E, Malkowski M, Nagabhushan TL, Kumar CC, Armstrong L. Integrin alpha(v)beta(3)-mediated activation of apoptosis. Exp Cell Res. 1999;251(1):33–45. https://doi.org/10.1006/excr.1999.4559.

    Article  PubMed  CAS  Google Scholar 

  140. Matter ML, Zhang Z, Nordstedt C, Ruoslahti E. The alpha5beta1 integrin mediates elimination of amyloid-beta peptide and protects against apoptosis. J Cell Biol. 1998;141(4):1019–30. https://doi.org/10.1083/jcb.141.4.1019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. O’Brien V, Frisch SM, Juliano RL. Expression of the integrin alpha 5 subunit in HT29 colon carcinoma cells suppresses apoptosis triggered by serum deprivation. Exp Cell Res. 1996;224(1):208–13. https://doi.org/10.1006/excr.1996.0130.

    Article  PubMed  Google Scholar 

  142. Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA. 1995;92(13):6161–5. https://doi.org/10.1073/pnas.92.13.6161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol. 1996;134(3):793–9. https://doi.org/10.1083/jcb.134.3.793.

    Article  PubMed  CAS  Google Scholar 

  144. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23(48):7906–9. https://doi.org/10.1038/sj.onc.1208160.

    Article  PubMed  CAS  Google Scholar 

  145. Böttcher RT, Lange A, Fässler R. How ILK and kindlins cooperate to orchestrate integrin signaling. Curr Opin Cell Biol. 2009;21(5):670–5. https://doi.org/10.1016/j.ceb.2009.05.008.

    Article  PubMed  CAS  Google Scholar 

  146. Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997;16(10):2783–93. https://doi.org/10.1093/emboj/16.10.2783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Goldsmith ZG, Dhanasekaran DN. G Protein regulation of MAPK networks. Oncogene. 2007;26(22):3122–42. https://doi.org/10.1038/sj.onc.1210407.

    Article  PubMed  CAS  Google Scholar 

  148. Chiarugi P, Giannoni E. Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol. 2008;76(11):1352–64. https://doi.org/10.1016/j.bcp.2008.07.023.

    Article  PubMed  CAS  Google Scholar 

  149. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13(5):555–62. https://doi.org/10.1016/s0955-0674(00)00251-9.

    Article  PubMed  CAS  Google Scholar 

  150. Gilmore AP. Anoikis. Cell Death Differ. 2005;12(Suppl 2):1473–7. https://doi.org/10.1038/sj.cdd.4401723.

    Article  PubMed  CAS  Google Scholar 

  151. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012;226(2):380–93. https://doi.org/10.1002/path.3000.

    Article  PubMed  CAS  Google Scholar 

  152. Krishna S, Overholtzer M. Mechanisms and consequences of entosis. Cell Mol Life Sci. 2016;73(11–12):2379–86. https://doi.org/10.1007/s00018-016-2207-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Overholtzer M, Mailleux AA, Mouneimne G, et al. A Nonapoptotic Cell Death Process Entosis that Occurs by Cell-in-Cell Invasion. Cell. 2007;131(5):966–79. https://doi.org/10.1016/j.cell.2007.10.040.

    Article  PubMed  CAS  Google Scholar 

  154. Martins I, Raza SQ, Voisin L, et al. Entosis: The emerging face of non-cell-autonomous type IV programmed death. Biomed J. 2017;40(3):133–40. https://doi.org/10.1016/j.bj.2017.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zeng C, Zeng B, Dong C, Liu J, Xing F. Rho-ROCK signaling mediates entotic cell death in tumor. Cell Death Discov. 2020;6(1):4. https://doi.org/10.1038/s41420-020-0238-7.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang M, Ning X, Chen A, et al. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci Rep. 2015;5(1):12223. https://doi.org/10.1038/srep12223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sun Q, Cibas ES, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24(11):1288–98. https://doi.org/10.1038/cr.2014.137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol. 2011;13(11):1335–43. https://doi.org/10.1038/ncb2363.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Wang S, Guo Z, Xia P, et al. Internalization of NK cells into tumor cells requires ezrin and leads to programmed cell-in-cell death. Cell Res. 2009;19(12):1350–62. https://doi.org/10.1038/cr.2009.114.

    Article  PubMed  CAS  Google Scholar 

  160. Cano CE, Sandí MJ, Hamidi T, et al. Homotypic cell cannibalism a cell-death process regulated by the nuclear protein 1 opposes to metastasis in pancreatic cancer. EMBO Mol Med. 2012;4(9):964–79. https://doi.org/10.1002/emmm.201201255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Schwegler M, Wirsing AM, Schenker HM, et al. Prognostic value of homotypic cell internalization by nonprofessional phagocytic cancer cells. BioMed Res Int. 2015;2015:1–14. https://doi.org/10.1155/2015/359392.

    Article  CAS  Google Scholar 

  162. Huang H, Chen A, Wang T, et al. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining. Oncotarget. 2015;6(24):20278–87. https://doi.org/10.18632/oncotarget.4275.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Li Y, Sun X, Dey SK. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep. 2015;11(3):358–65. https://doi.org/10.1016/j.celrep.2015.03.035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15(5):348–66. https://doi.org/10.1038/nrd.2015.6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. • Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042The reserachers identified the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Yu H, Guo P, Xie X, Wang Y, Chen G. Ferroptosis a new form of cell death and its relationships with tumourous diseases. J Cell Mol Med. 2017;21(4):648–57. https://doi.org/10.1111/jcmm.13008.

    Article  PubMed  CAS  Google Scholar 

  167. Feng H, Stockwell BR. Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16(5):e2006203. https://doi.org/10.1371/journal.pbio.2006203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Linkermann A, Skouta R, Himmerkus N, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci USA. 2014;111(47):16836–41. https://doi.org/10.1073/pnas.1415518111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Kim SE, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol. 2016;11(11):977–85. https://doi.org/10.1038/nnano.2016.164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15(3):234–45. https://doi.org/10.1016/j.chembiol.2008.02.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96. https://doi.org/10.1016/s1535-6108(03)00050-3.

    Article  PubMed  CAS  Google Scholar 

  172. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1–2):317–31. https://doi.org/10.1016/j.cell.2013.12.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12(7):497–503. https://doi.org/10.1038/nchembio.2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Hofmans S, Vanden Berghe T, Devisscher L, et al. Novel ferroptosis inhibitors with improved potency and ADME properties. J Med Chem. 2016;59(5):2041–53. https://doi.org/10.1021/acs.jmedchem.5b01641.

    Article  PubMed  CAS  Google Scholar 

  175. Friedmann Angeli JP, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91. https://doi.org/10.1038/ncb3064.

    Article  PubMed  CAS  Google Scholar 

  176. Brigelius-Flohé R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303. https://doi.org/10.1016/j.bbagen.2012.11.020.

    Article  PubMed  CAS  Google Scholar 

  177. Seiler A, Schneider M, Förster H, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 2008;8(3):237–48. https://doi.org/10.1016/j.cmet.2008.07.005.

    Article  PubMed  CAS  Google Scholar 

  178. Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 2018;8:992. https://doi.org/10.3389/fphar.2017.00992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Zheng D-W, Lei Q, Zhu J-Y, et al. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett. 2017;17(1):284–91. https://doi.org/10.1021/acs.nanolett.6b04060.

    Article  PubMed  CAS  Google Scholar 

  180. Mou Y, Wang J, Wu J, et al. Ferroptosis a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12(1):34. https://doi.org/10.1186/s13045-019-0720-y.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Fearnhead HO, Vandenabeele P, Vanden BT. How do we fit ferroptosis in the family of regulated cell death? Cell Death Differ. 2017;24(12):1991–8. https://doi.org/10.1038/cdd.2017.149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Lee Y-S, Lee D-H, Choudry HA, Bartlett DL, Lee YJ. Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Mol Cancer Res. 2018;16(7):1073–6. https://doi.org/10.1158/1541-7786.MCR-18-0055.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ryter SW, Choi AMK. Cell death and repair in lung disease. In: McManus LM, Mitchell RN, editors. Pathobiology of Human Disease. Amsterdam: Elsevier; 2014. p. 2558–74. https://doi.org/10.1016/B978-0-12-386456-7.05302-8.

    Chapter  Google Scholar 

  184. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27(9):673–84. https://doi.org/10.1016/j.tcb.2017.05.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. • Fernandes-Alnemri T, Wu J, Yu J-W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604. https://doi.org/10.1038/sj.cdd.4402194The paper stated that the macrophage pyroptosis is mediated by a unique pyroptosome.

    Article  PubMed  CAS  Google Scholar 

  187. Tan Y, Chen Q, Li X, et al. Pyroptosis: a new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40(1):153. https://doi.org/10.1186/s13046-021-01959-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Mathur A, Hayward JA, Man SM. Molecular mechanisms of inflammasome signaling. J Leukoc Biol. 2017;103(2):233–57. https://doi.org/10.1189/jlb.3MR0617-250R.

    Article  PubMed  CAS  Google Scholar 

  189. Broz P, Dixit VM. Inflammasomes: mechanism of assembly regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20. https://doi.org/10.1038/nri.2016.58.

    Article  PubMed  CAS  Google Scholar 

  190. Beere HM, Green DR. Immunologic repercussions of cell death. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR, editors. Kelley and Firestein’s Textbook of Rheumatology. Amsterdam: Elsevier; 2017. p. 418–48. https://doi.org/10.1016/B978-0-323-31696-5.00028-0.

    Chapter  Google Scholar 

  191. Li Y, Fan J, Ju D. Neurotoxicity concern about the brain targeting delivery systems. In: Gao H, Gao X, editors. Brain Targeted Drug Delivery System. Amsterdam: Elsevier; 2019. p. 377–408. https://doi.org/10.1016/B978-0-12-814001-7.00015-9.

    Chapter  Google Scholar 

  192. Yi Y-S. Caspase-11 Non-canonical inflammasome: emerging activator and regulator of infection-mediated inflammatory responses. IJMS. 2020;21(8):2736. https://doi.org/10.3390/ijms21082736.

    Article  PubMed Central  CAS  Google Scholar 

  193. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8(11):1812–25. https://doi.org/10.1111/j.1462-5822.2006.00751.x.

    Article  PubMed  Google Scholar 

  194. Elkon KB. Cell Survival and Death in Rheumatic Diseases. In: Saunders WB, editor. Kelley’s Textbook of Rheumatology. Amsterdam: Elsevier; 2013. p. 382–99. https://doi.org/10.1016/B978-1-4377-1738-9.00027-X.

    Chapter  Google Scholar 

  195. Davis BK, Wen H, Ting JP-Y. The inflammasome NLRs in immunity inflammation and associated diseases. Annu Rev Immunol. 2011;29(1):707–35. https://doi.org/10.1146/annurev-immunol-031210-101405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Vandanmagsar B, Youm Y-H, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88. https://doi.org/10.1038/nm.2279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci. 2000;97(26):14376–81. https://doi.org/10.1073/pnas.97.26.14376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Valamanesh F, Torriglia A, Savoldelli M, et al. Glucocorticoids induce retinal toxicity through mechanisms mainly associated with paraptosis. Mol Vis. 2007;13:1746–57.

    PubMed  CAS  Google Scholar 

  199. Torriglia A, Valamanesh F, Behar-Cohen F. On the retinal toxicity of intraocular glucocorticoids. Biochem Pharmacol. 2010;80(12):1878–86. https://doi.org/10.1016/j.bcp.2010.07.012.

    Article  PubMed  CAS  Google Scholar 

  200. Wei T, Kang Q, Ma B, Gao S, Li X, Liu Y. Activation of autophagy and paraptosis in retinal ganglion cells after retinal ischemia and reperfusion injury in rats. Exp Ther Med. 2015;9(2):476–82. https://doi.org/10.3892/etm.2014.2084.

    Article  PubMed  Google Scholar 

  201. Wang Y, Xu K, Zhang H, et al. Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: A brief literature review presenting a novel hypothesis in glaucoma pathology. Mol Med Rep. 2014;10(3):1179–83. https://doi.org/10.3892/mmr.2014.2346.

    Article  PubMed  CAS  Google Scholar 

  202. Gong Y, Crawford JC, Heckmann BL, Green DR. To the edge of cell death and back. FEBS J. 2019;286(3):430–40. https://doi.org/10.1111/febs.14714.

    Article  PubMed  CAS  Google Scholar 

  203. Xie Y, Kang R, Tang D. Role of the beclin 1 network in the cross-regulation between autophagy and apoptosis. In: Hayat MA, editor. Autophagy: Cancer Other Pathologies Inflammation Immunity Infection and Aging. Amsterdam: Elsevier; 2016. p. 75–88. https://doi.org/10.1016/B978-0-12-802937-4.00002-8.

    Chapter  Google Scholar 

  204. Radosevich J. Apoptosis and beyond: the many ways cells die. Hoboken: John Wiley & Sons Inc; 2018. https://doi.org/10.1002/9781119432463.

    Book  Google Scholar 

  205. Khan S, Bhat AA. Nonenzymatic posttranslational protein modifications: mechanism and associated disease pathologies. In: Dar TA, Singh LR, editors. Protein Modificomics. Amsterdam: Elsevier; 2019. p. 229–80. https://doi.org/10.1016/B978-0-12-811913-6.00010-2.

    Chapter  Google Scholar 

  206. Lyamzaev KG, Nepryakhina OK, Saprunova VB, et al. Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): Formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochim Biophys Acta Bioenerg. 2008;1777(7–8):817–25. https://doi.org/10.1016/j.bbabio.2008.03.027.

    Article  CAS  Google Scholar 

  207. Jangamreddy JR, Los MJ. Mitoptosis a novel mitochondrial death mechanism leading predominantly to activation of autophagy. Hepat Mon. 2012;12(8):e6159. https://doi.org/10.5812/hepatmon.6159.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6(8):657–63. https://doi.org/10.1038/nrm1697.

    Article  PubMed  CAS  Google Scholar 

  209. Arnoult D, Rismanchi N, Grodet A, et al. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol. 2005;15(23):2112–8. https://doi.org/10.1016/j.cub.2005.10.041.

    Article  PubMed  CAS  Google Scholar 

  210. Hu T, Weng S, Tang W, et al. Overexpression of BIRC6 is a predictor of prognosis for colorectal cancer. PLoS ONE. 2015;10(5):e0125281. https://doi.org/10.1371/journal.pone.0125281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Reddien PW, Cameron S, Horvitz HR. Phagocytosis promotes programmed cell death in C elegans. Nature. 2001;412(6843):198–202. https://doi.org/10.1038/35084096.

    Article  PubMed  CAS  Google Scholar 

  212. Dong X, Lin D, Low C, et al. Elevated expression of BIRC6 protein in non–small-cell lung cancers is associated with cancer recurrence and chemoresistance. J Thorac Oncol. 2013;8(2):161–70. https://doi.org/10.1097/JTO.0b013e31827d5237.

    Article  PubMed  CAS  Google Scholar 

  213. Jiang SX, Lertvorachon J, Hou ST, et al. Chlortetracycline and demeclocycline inhibit calpains and protect mouse neurons against glutamate toxicity and cerebral ischemia. J Biol Chem. 2005;280(40):33811–8. https://doi.org/10.1074/jbc.M503113200.

    Article  PubMed  CAS  Google Scholar 

  214. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359(5):473–81. https://doi.org/10.1056/NEJMoa071142.

    Article  PubMed  CAS  Google Scholar 

  215. Cudkowicz ME, Shefner JM, Simpson E, et al. Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve. 2008;38(1):837–44. https://doi.org/10.1002/mus.21059.

    Article  PubMed  CAS  Google Scholar 

  216. Weinreb O, Mandel S, Bar-Am O, et al. Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics. 2009;6(1):163–74. https://doi.org/10.1016/j.nurt.2008.10.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Patil AA, Bhor SA, Rheea WJ. Cell death in culture: Molecular mechanisms, detections, and inhibition strategies. Journal of Industrial and Engineering Chemistry. 2020;91:37–53. https://doi.org/10.1016/j.jiec.2020.08.009

  218. Florey O, Krajcovic M, Sun Q, Overholtzer M. Entosis. Curr Biol. 2010;20(3):PR88–R89. https://doi.org/10.1016/j.cub.2009.11.020

Download references

Acknowledgements

The authors are very grateful to Deanship of Scientific Research (DSR) at the Majmaah University for their support and contribution to this study. Qamar Zia would like to thank Department of Medical Laboratories, Majmaah University, Majmaah, KSA, for providing the facility while Azfar Jamal acknowledge the College of Science, Department of Biology, Al-Zulfi, Majmaah University, Majmaah, KSA, for providing the support and facility to complete this work. Asim Azhar would like to acknowledge the director and principal of Aligarh College of Education, Aligarh for logistic support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asim Azhar or Azfar Jamal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qamar Zia and Asim Azhar have equal contribution.

This article is part of the Topical Collection on Molecular Biology of Cell Death and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, Q., Azhar, A., Hassan, N. et al. Cell Death: a Molecular Perspective. Curr Mol Bio Rep 7, 41–66 (2021). https://doi.org/10.1007/s40610-021-00146-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-021-00146-3

Keywords

Navigation