Skip to main content

Advertisement

Log in

Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic

  • Mechanisms of Toxicity (CJ Mattingly and A Planchart, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Exposure to inorganic arsenic (iAs) via drinking water represents a significant global public health threat with chronic exposure associated with cancer, skin lesions, neurological impairment, and cardiovascular diseases. Particularly susceptible populations include the developing fetus and young children. This review summarizes some of the critical studies of the long-term health effects and underlying biological mechanisms related to developmental exposure to arsenic. It also highlights the complex factors, such as the sex of the exposed individual, that contribute to susceptibility to the later life health effects of iAs.

Recent Findings

Studies in animal models, as well as human population-based studies, have established that prenatal and early life iAs exposures are associated with long-term effects, and many of these effects display sexually dimorphic responses. As an underlying molecular basis, recent epidemiologic and toxicologic studies have demonstrated that changes to the epigenome may play a key mechanistic role underlying many of the iAs-associated health outcomes.

Summary

Developmental exposure to iAs results in early and later life health effects. Mechanisms underlying these outcomes are likely complex, and include disrupted key biological pathways with ties to the epigenome. This highlights the importance of continued research, particularly in animal models, to elucidate the important underpinnings (e.g., timing of exposure, metabolism, dose) of these complex health outcomes and to identify the biological mechanisms underlying sexual dimorphism in iAs-associated diseases. Future research should investigate preventative strategies for the protection from the detrimental health endpoints associated with early life exposure to iAs. Such strategies could include potential interventions focused on dietary supplementation for example the adoption of a folate-rich diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Guidelines for Drinking-Water Quality, Fourth Edition. World Health Organization, 2011. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf. Accessed 3 Aug 2017.

  2. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121(3):295–302. https://doi.org/10.1289/ehp.1205875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanders AP, Messier KP, Shehee M, Rudo K, Serre ML, Fry RC. Arsenic in North Carolina: public health implications. Environ Int. 2012;38(1):10–6. https://doi.org/10.1016/j.envint.2011.08.005.

    Article  CAS  PubMed  Google Scholar 

  4. Baris D, Waddell R, Beane Freeman LE, Schwenn M, Colt JS, Ayotte JD, Ward MH, Nuckols J, Schned A, Jackson B, Clerkin C, Rothman N, Moore le, Taylor A, Robinson G, Hosain GMM, Armenti KR, McCoy R, Samanic C, Hoover RN, Fraumeni JF, Johnson A, Karagas MR, Silverman DT Elevated bladder cancer in northern New England: the role of drinking water and arsenic. J Natl Cancer Inst 2016;108(9). https://doi.org/10.1093/jnci/djw099.

  5. Steinmaus C, Yuan Y, Bates MN, Smith AH. Case-control study of bladder cancer and drinking water arsenic in the western United States. Am J Epidemiol. 2003;158(12):1193–201. https://doi.org/10.1093/aje/kwg281.

    Article  PubMed  Google Scholar 

  6. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci. 1998;44(2):185–90. https://doi.org/10.1006/toxs.1998.2486.

    Article  CAS  PubMed  Google Scholar 

  7. Vahter M. Effects of arsenic on maternal and fetal health. Annu Rev Nutr. 2009;29(1):381–99. https://doi.org/10.1146/annurev-nutr-080508-141102.

    Article  CAS  PubMed  Google Scholar 

  8. Vahter M. Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol. 2008;102(2):204–11. https://doi.org/10.1111/j.1742-7843.2007.00168.x.

    Article  CAS  PubMed  Google Scholar 

  9. Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, et al. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. cohort. Environ Health Perspect. 2016;124(6):840–7. https://doi.org/10.1289/ehp.1409282.

    PubMed  Google Scholar 

  10. Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Gandolfi AJ, Gonzalez-De Alba C. In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol. 2015;35(4):358–66. https://doi.org/10.1002/jat.3023.

    Article  CAS  PubMed  Google Scholar 

  11. Smith AH, Marshall G, Liaw J, Yuan Y, Ferreccio C, Steinmaus C. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water. Environ Health Perspect. 2012;120(11):1527–31. https://doi.org/10.1289/ehp.1104867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Selvin S, Liaw J, et al. Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. Am J Epidemiol. 2007;166(12):1381–91. https://doi.org/10.1093/aje/kwm238.

    Article  PubMed  Google Scholar 

  13. Raqib R, Ahmed S, Sultana R, Wagatsuma Y, Mondal D, Hoque AM, et al. Effects of in utero arsenic exposure on child immunity and morbidity in rural Bangladesh. Toxicol Lett. 2009;185(3):197–202. https://doi.org/10.1016/j.toxlet.2009.01.001.

    Article  CAS  PubMed  Google Scholar 

  14. von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A, et al. Children’s intellectual function in relation to arsenic exposure. Epidemiology. 2007;18(1):44–51. https://doi.org/10.1097/01.ede.0000248900.65613.a9.

    Article  Google Scholar 

  15. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR. Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect. 2012;120(10):1418–24. https://doi.org/10.1289/ehp.1205014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL. Arsenic, organic foods, and brown rice syrup. Environ Health Perspect. 2012;120(5):623–6. https://doi.org/10.1289/ehp.1104619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karagas MR, Punshon T, Sayarath V, Jackson BP, Folt CL, Cottingham KL. Association of rice and rice-product consumption with arsenic exposure early in life. JAMA Pediatr. 2016;170(6):609–16. https://doi.org/10.1001/jamapediatrics.2016.0120.

    Article  PubMed  PubMed Central  Google Scholar 

  18. •• Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect. 2015;123(5):412–21. https://doi.org/10.1289/ehp.1307894. Provides a concise systematic review of reproductive/birth outcomes and perinatal health associated with iAs exposure.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Baz MAH, El-Deeb TS, El-Noweihi AM, Mohany KM, Shaaban OM, Abbas AM. Environmental factors and apoptotic indices in patients with intrauterine growth retardation: a nested case-control study. Environ Toxicol Pharmacol. 2015;39(2):589–96. https://doi.org/10.1016/j.etap.2015.01.009.

    Article  CAS  PubMed  Google Scholar 

  20. Peng S, Liu L, Zhang X, Heinrich J, Zhang J, Schramm KW, et al. A nested case-control study indicating heavy metal residues in meconium associate with maternal gestational diabetes mellitus risk. Environ Health. 2015;14(1):19. https://doi.org/10.1186/s12940-015-0004-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hopenhayn-Rich C, Browning SR, Hertz-Picciotto I, Ferreccio C, Peralta C, Gibb H. Chronic arsenic exposure and risk of infant mortality in two areas of Chile. Environ Health Perspect. 2000;108(7):667–73. https://doi.org/10.1289/ehp.00108667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gelmann ER, Gurzau E, Gurzau A, Goessler W, Kunrath J, Yeckel CW, et al. A pilot study: the importance of inter-individual differences in inorganic arsenic metabolism for birth weight outcome. Environ Toxicol Pharmacol. 2013;36(3):1266–75. https://doi.org/10.1016/j.etap.2013.10.006.

    Article  CAS  PubMed  Google Scholar 

  23. Laine JE, Bailey KA, Rubio-Andrade M, Olshan AF, Smeester L, Drobna Z, et al. Maternal arsenic exposure, arsenic methylation efficiency, and birth outcomes in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Mexico. Environ Health Perspect. 2015;123(2):186–92. https://doi.org/10.1289/ehp.1307476.

    CAS  PubMed  Google Scholar 

  24. Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, El Arifeen S, et al. Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol. 2009;169(3):304–12. https://doi.org/10.1093/aje/kwn332.

    Article  PubMed  Google Scholar 

  25. Gilbert-Diamond D, Emond JA, Baker ER, Korrick SA, Karagas MR. Relation between arsenic exposure and birth outcomes in a cohort of mothers and their newborns from New Hampshire. Environ Health Perspect. 2016;124(8):1299–307. https://doi.org/10.1289/ehp.1510065.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davis MA, Higgins J, Li Z, Gilbert-Diamond D, Baker ER, Das A, et al. Preliminary analysis of in utero low-level arsenic exposure and fetal growth using biometric measurements extracted from fetal ultrasound reports. Environ Health. 2015;14(1):1–11. https://doi.org/10.1186/1476-069x-14-12.

    Article  Google Scholar 

  27. Newcombe R, Milne BJ, Caspi A, Poulton R, Moffitt TE. Birthweight predicts IQ: fact or artefact? Twin Res Hum Genet. 2007;10(4):581–6. https://doi.org/10.1375/twin.10.4.581.

    Article  PubMed  Google Scholar 

  28. Gale CR, O'Callaghan FJ, Bredow M, Martyn CN. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics. 2006;118(4):1486–92. https://doi.org/10.1542/peds.2005-2629.

    Article  PubMed  Google Scholar 

  29. Dakeishi M, Murata K, Grandjean P. Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ Health. 2006;5(1):31. https://doi.org/10.1186/1476-069x-5-31.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yorifuji T, Kato T, Ohta H, Bellinger DC, Matsuoka K, Grandjean P. Neurological and neuropsychological functions in adults with a history of developmental arsenic poisoning from contaminated milk powder. Neurotoxicol Teratol. 2016;53:75–80. https://doi.org/10.1016/j.ntt.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  31. Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Ahsan H, Levy D, et al. Arsenic and manganese exposure and children’s intellectual function. Neurotoxicology. 2011;32(4):450–7. https://doi.org/10.1016/j.neuro.2011.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosado JL, Ronquillo D, Kordas K, Rojas O, Alatorre J, Lopez P, et al. Arsenic exposure and cognitive performance in Mexican schoolchildren. Environ Health Perspect. 2007;115(9):1371–5. https://doi.org/10.1289/ehp.9961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsieh RL, Huang YL, Shiue HS, Huang SR, Lin MI, Mu SC, et al. Arsenic methylation capacity and developmental delay in preschool children in Taiwan. Int J Hyg Environ Health. 2014;217(6):678–86. https://doi.org/10.1016/j.ijheh.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  34. Wasserman GA, Liu X, Loiacono NJ, Kline J, Factor-Litvak P, van Geen A, et al. A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren. Environ Health. 2014;13(1):23. https://doi.org/10.1186/1476-069x-13-23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, et al. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol. 2011;40(6):1593–604. https://doi.org/10.1093/ije/dyr176.

    Article  CAS  PubMed  Google Scholar 

  36. Hamadani JD, SM G-MG, Tofail F, Nermell B, Fangstrom B, Huda SN, et al. Pre- and postnatal arsenic exposure and child development at 18 months of age: a cohort study in rural Bangladesh. Int J Epidemiol. 2010;39(5):1206–16. https://doi.org/10.1093/ije/dyp369.

    Article  PubMed  Google Scholar 

  37. Andrew AS, Jewell DA, Mason RA, Whitfield ML, Moore JH, Karagas MR. Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population. Environ Health Perspect. 2008;116(4):524–31. https://doi.org/10.1289/ehp.10861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biswas R, Ghosh P, Banerjee N, Das JK, Sau T, Banerjee A, et al. Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic. Hum Exp Toxicol. 2008;27(5):381–6. https://doi.org/10.1177/0960327108094607.

    Article  CAS  PubMed  Google Scholar 

  39. Dangleben NL, Skibola CF, Smith MT. Arsenic immunotoxicity: a review. Environ Health. 2013;12(1):73. https://doi.org/10.1186/1476-069X-12-73.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith AH, Yunus M, Khan AF, Ercumen A, Yuan Y, Smith MH, et al. Chronic respiratory symptoms in children following in utero and early life exposure to arsenic in drinking water in Bangladesh. Int J Epidemiol. 2013;42(4):1077–86. https://doi.org/10.1093/ije/dyt120.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rahman A, Vahter M, Ekstrom EC, Persson LA. Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect. 2011;119(5):719–24. https://doi.org/10.1289/ehp.1002265.

    Article  CAS  PubMed  Google Scholar 

  42. Farzan SF, Korrick S, Li Z, Enelow R, Gandolfi AJ, Madan J, et al. In utero arsenic exposure and infant infection in a United States cohort: a prospective study. Environ Res. 2013;126:24–30. https://doi.org/10.1016/j.envres.2013.05.001.

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed S, Akhtar E, Roy A, von Ehrenstein OS, Vahter M, Wagatsuma Y, et al. Arsenic exposure alters lung function and airway inflammation in children: a cohort study in rural Bangladesh. Environ Int. 2017;101:108–16. https://doi.org/10.1016/j.envint.2017.01.014.

    Article  CAS  PubMed  Google Scholar 

  44. Dauphine DC, Ferreccio C, Guntur S, Yuan Y, Hammond SK, Balmes J, et al. Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health. 2011;84(6):591–600. https://doi.org/10.1007/s00420-010-0591-6.

    Article  CAS  PubMed  Google Scholar 

  45. Fry RC, Navasumrit P, Valiathan C, Svensson JP, Hogan BJ, Luo M, et al. Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers. PLoS Genet. 2007;3(11):e207. https://doi.org/10.1371/journal.pgen.0030207.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rager JE, Bailey KA, Smeester L, Miller SK, Parker JS, Laine JE, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen. 2014;55(3):196–208. https://doi.org/10.1002/em.21842.

    Article  CAS  PubMed  Google Scholar 

  47. Ahmed S, Ahsan KB, Kippler M, Mily A, Wagatsuma Y, Hoque AM, et al. In utero arsenic exposure is associated with impaired thymic function in newborns possibly via oxidative stress and apoptosis. Toxicol Sci. 2012;129(2):305–14. https://doi.org/10.1093/toxsci/kfs202.

    Article  CAS  PubMed  Google Scholar 

  48. Soto-Pena GA, Luna AL, Acosta-Saavedra L, Conde P, Lopez-Carrillo L, Cebrian ME, et al. Assessment of lymphocyte subpopulations and cytokine secretion in children exposed to arsenic. FASEB J. 2006;20(6):779–81. https://doi.org/10.1096/fj.05-4860fje.

    Article  CAS  PubMed  Google Scholar 

  49. Ahmed S, Moore SE, Kippler M, Gardner R, Hawlader MD, Wagatsuma Y, et al. Arsenic exposure and cell-mediated immunity in pre-school children in rural Bangladesh. Toxicol Sci. 2014;141(1):166–75. https://doi.org/10.1093/toxsci/kfu113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smeester L, Bommarito PA, Martin EM, Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, et al. Chronic early childhood exposure to arsenic is associated with a TNF-mediated proteomic signaling response. Environ Toxicol Pharmacol. 2017;52:183–7. https://doi.org/10.1016/j.etap.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, Graziano JH, Parvez F, Liu M, Slavkovich V, Kalra T, et al. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ. 2011;342(may05 2):d2431. https://doi.org/10.1136/bmj.d2431.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med. 2013;159(10):649–59. https://doi.org/10.7326/0003-4819-159-10-201311190-00719.

    PubMed  PubMed Central  Google Scholar 

  53. Chen CJ, Chiou HY, Chiang MH, Lin LJ, Tai TY. Dose-response relationship between I schemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol. 1996;16(4):504–10. https://doi.org/10.1161/01.ATV.16.4.504.

    Article  CAS  PubMed  Google Scholar 

  54. Rahman M, Tondel M, Ahmad SA, Chowdhury IA, Faruquee MH, Axelson O. Hypertension and arsenic exposure in Bangladesh. Hypertension. 1999;33(1):74–8. https://doi.org/10.1161/01.HYP.33.1.74.

    Article  CAS  PubMed  Google Scholar 

  55. Rosenberg HG. Systemic arterial disease with myocardial infarction. Report on two infants. Circulation. 1973;47(2):270–5. https://doi.org/10.1161/01.CIR.47.2.270.

    Article  CAS  PubMed  Google Scholar 

  56. Systemic RHG. Arterial disease and chronic arsenicism in infants. Arch Pathol. 1974;97(6):360–5.

    Google Scholar 

  57. Rahman M, Sohel N, Yunus M, Chowdhury ME, Hore SK, Zaman K, et al. Increased childhood mortality and arsenic in drinking water in MATLAB, Bangladesh: a population-based cohort study. PLoS One. 2013;8(1):e55014. https://doi.org/10.1371/journal.pone.0055014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hawkesworth S, Wagatsuma Y, Kippler M, Fulford AJ, Arifeen SE, Persson LA, et al. Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol. 2013;42(1):176–85. https://doi.org/10.1093/ije/dys215.

    Article  PubMed  Google Scholar 

  59. Osorio-Yáñez C, Ayllon-Vergara JC, Aguilar-Madrid G, Arreola-Mendoza L, Hernández-Castellanos E, Barrera-Hernández A, et al. Carotid intima-media thickness and plasma asymmetric dimethylarginine in Mexican children exposed to inorganic arsenic. Environ Health Perspect. 2013;121(9):1090–6. https://doi.org/10.1289/ehp.1205994.

    PubMed  PubMed Central  Google Scholar 

  60. Farzan SF, Brickley EB, Li Z, Gilbert-Diamond D, Gossai A, Chen Y, et al. Maternal and infant inflammatory markers in relation to prenatal arsenic exposure in a U.S. pregnancy cohort. Environ Res. 2017;156:426–33. https://doi.org/10.1016/j.envres.2017.03.056.

    Article  CAS  PubMed  Google Scholar 

  61. Liaw J, Marshall G, Yuan Y, Ferreccio C, Steinmaus C, Smith AH. Increased childhood liver cancer mortality and arsenic in drinking water in northern Chile. Cancer Epidemiol Biomark Prev. 2008;17(8):1982–7. https://doi.org/10.1158/1055-9965.epi-07-2816.

    Article  CAS  Google Scholar 

  62. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect. 2006;114(8):1293–6. https://doi.org/10.1289/ehp.8832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang JP, Qi L, Moore MR, Ng JC. A review of animal models for the study of arsenic carcinogenesis. Toxicol Lett. 2002;133(1):17–31. https://doi.org/10.1016/S0378-4274(02)00086-3.

    Article  CAS  PubMed  Google Scholar 

  64. Waalkes MP, Ward JM, Liu J, Diwan BA. Transplacental carcinogenicity of inorganic arsenic in the drinking water: induction of hepatic, ovarian, pulmonary, and adrenal tumors in mice. Toxicol Appl Pharmacol. 2003;186(1):7–17. https://doi.org/10.1016/S0041-008X(02)00022-4.

    Article  CAS  PubMed  Google Scholar 

  65. Tokar EJ, Diwan BA, Ward JM, Delker DA, Waalkes MP. Carcinogenic effects of “whole-life” exposure to inorganic arsenic in CD1 mice. Toxicol Sci. 2011;119(1):73–83. https://doi.org/10.1093/toxsci/kfq315.

    Article  CAS  PubMed  Google Scholar 

  66. Waalkes MP, Ward JM, Diwan BA. Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis. 2004;25(1):133–41. https://doi.org/10.1093/carcin/bgg181.

    Article  CAS  PubMed  Google Scholar 

  67. Liu J, Xie Y, Cooper R, Ducharme DM, Tennant R, Diwan BA, et al. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism. Toxicol Appl Pharmacol. 2007;220(3):284–91. https://doi.org/10.1016/j.taap.2007.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tseng C-H. Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J Environ Sci Health, Part C. 2007;25(1):1–22. https://doi.org/10.1080/10590500701201695.

    Article  CAS  Google Scholar 

  69. Tokar EJ, Diwan BA, Thomas DJ, Waalkes MP. Tumors and proliferative lesions in adult offspring after maternal exposure to methylarsonous acid during gestation in CD1 mice. Arch Toxicol. 2012;86(6):975–82. https://doi.org/10.1007/s00204-012-0820-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Waalkes MP, Qu W, Tokar EJ, Kissling GE, Dixon D. Lung tumors in mice induced by “whole-life” inorganic arsenic exposure at human-relevant doses. Arch Toxicol. 2014;88(8):1619–29. https://doi.org/10.1007/s00204-014-1305-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Waalkes MP, Liu J, Diwan BA. Transplacental arsenic carcinogenesis in mice. Toxicol Appl Pharmacol. 2007;222(3):271–80. https://doi.org/10.1016/j.taap.2006.12.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie Y, Liu J, Benbrahim-Tallaa L, Ward JM, Logsdon D, Diwan BA, et al. Aberrant DNA methylation and gene expression in livers of newborn mice transplacentally exposed to a hepatocarcinogenic dose of inorganic arsenic. Toxicology. 2007;236(1–2):7–15. https://doi.org/10.1016/j.tox.2007.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sullivan JP, Minna JD, Shay JW. Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev. 2010;29(1):61–72. https://doi.org/10.1007/s10555-010-9216-5.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66(4):1883–90; discussion 95-6. https://doi.org/10.1158/0008-5472.CAN-05-3153.

    Article  CAS  PubMed  Google Scholar 

  75. Kangsamaksin T, Park HJ, Trempus CS, Morris RJ. A perspective on murine keratinocyte stem cells as targets of chemically induced skin cancer. Mol Carcinog. 2007;46(8):579–84. https://doi.org/10.1002/mc.20355.

    Article  CAS  PubMed  Google Scholar 

  76. Sun Y, Tokar EJ, Waalkes MP. Overabundance of putative cancer stem cells in human skin keratinocyte cells malignantly transformed by arsenic. Toxicol Sci: Off J Soc Toxicol. 2012;125(1):20–9. https://doi.org/10.1093/toxsci/kfr282.

    Article  CAS  Google Scholar 

  77. Chang Q, Chen B, Thakur C, Lu Y, Chen F. Arsenic-induced sub-lethal stress reprograms human bronchial epithelial cells to CD61 cancer stem cells. Oncotarget. 2014;5(5):1290–303. https://doi.org/10.18632/oncotarget.1789.

    Article  PubMed  Google Scholar 

  78. Waalkes MP, Liu J, Germolec DR, Trempus CS, Cannon RE, Tokar EJ, et al. Arsenic exposure in utero exacerbates skin cancer response in adulthood with contemporaneous distortion of tumor stem cell dynamics. Cancer Res. 2008;68(20):8278–85. https://doi.org/10.1158/0008-5472.can-08-2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. States JC, Singh AV, Knudsen TB, Rouchka EC, Ngalame NO, Arteel GE, et al. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis. PLoS One. 2012;7(6):e38713. https://doi.org/10.1371/journal.pone.0038713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aung KH, Kyi-Tha-Thu C, Sano K, Nakamura K, Tanoue A, Nohara K, et al. Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice. Front Neurosci. 2016;10:137. https://doi.org/10.3389/fnins.2016.00137.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gutierrez-Torres DS, Gonzalez-Horta C, Del Razo LM, Infante-Ramirez R, Ramos-Martinez E, Levario-Carrillo M, et al. Prenatal exposure to sodium Arsenite alters placental glucose 1, 3, and 4 transporters in BALB/c mice. Biomed Res Int. 2015;2015:175025. https://doi.org/10.1155/2015/175025.

    Article  PubMed  PubMed Central  Google Scholar 

  82. •• Rodriguez KF, Ungewitter EK, Crespo-Mejias Y, Liu C, Nicol B, Kissling GE, et al. Effects of in utero exposure to arsenic during the second half of gestation on reproductive end points and metabolic parameters in female CD-1 mice. Environ Health Perspect. 2016;124(3):336–43. https://doi.org/10.1289/ehp.1509703. This study illustrates that even at the WHO recommended limit of 10ppb for arsenic in drinking water, prenatal iAs exposure is associated with late onset adverse outcomes.

    Article  PubMed  Google Scholar 

  83. Lantz RC, Chau B, Sarihan P, Witten ML, Pivniouk VI, Chen GJ. In utero and postnatal exposure to arsenic alters pulmonary structure and function. Toxicol Appl Pharmacol. 2009;235(1):105–13. https://doi.org/10.1016/j.taap.2008.11.012.

    Article  CAS  PubMed  Google Scholar 

  84. Waalkes MP, Liu J, Chen H, Xie Y, Achanzar WE, Zhou Y-S, et al. Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst. 2004;96(6):466–74. https://doi.org/10.1093/jnci/djh070.

    Article  CAS  PubMed  Google Scholar 

  85. Ahmed S, Mahabbat-e Khoda S, Rekha RS, Gardner RM, Ameer SS, Moore S, et al. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect. 2011;119(2):258–64. https://doi.org/10.1289/ehp.1002086.

    Article  CAS  PubMed  Google Scholar 

  86. Bailey KA, Laine J, Rager JE, Sebastian E, Olshan A, Smeester L, et al. Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci: Off J Soc Toxicol. 2014;139(2):328–37. https://doi.org/10.1093/toxsci/kfu053.

    Article  CAS  Google Scholar 

  87. Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, et al. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics. 2014;9(5):774–82. https://doi.org/10.4161/epi.28153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, et al. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015;143(1):97–106. https://doi.org/10.1093/toxsci/kfu210.

    Article  CAS  PubMed  Google Scholar 

  89. Sanders AP, Smeester L, Rojas D, DeBussycher T, Wu MC, Wright FA, et al. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics. 2014;9(2):212–21. https://doi.org/10.4161/epi.26798.

    Article  CAS  PubMed  Google Scholar 

  90. Horikoshi M, Yaghootkar H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ, et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat Genet. 2013;45(1):76–82. https://doi.org/10.1038/ng.2477.

    Article  CAS  PubMed  Google Scholar 

  91. St-Pierre J, Hivert M-F, Perron P, Poirier P, Guay S-P, Brisson D, et al. IGF2 DNA methylation is a modulator of newborn’s fetal growth and development. Epigenetics. 2012;7(10):1125–32. https://doi.org/10.4161/epi.21855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. • Martin E, Smeester L, Bommarito PA, Grace MR, Boggess K, Kuban K, et al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics. 2017;9(3):267–78. https://doi.org/10.2217/epi-2016-0132. This study highlights sexually-dimorphic epigenetic patterns in the placenta that likely influence the response to toxic substances such as inorganic arsenic.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Silveira PP, Portella AK, Goldani MZ, Barbieri MA. Developmental origins of health and disease (DOHaD). J pediatr. 2007;83(6):494–504. https://doi.org/10.2223/JPED.1728.

    Article  Google Scholar 

  94. Vickers M. Early life nutrition, epigenetics and programming of later life disease. Nutrients. 2014;6(6):2165–78. https://doi.org/10.3390/nu6062165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vanhees K, Vonhogen IG, van Schooten FJ, Godschalk RW. You are what you eat, and so are your children: the impact of micronutrients on the epigenetic programming of offspring. Cell Mol life Sci: CMLS. 2014;71(2):271–85. https://doi.org/10.1007/s00018-013-1427-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Environmental Health Sciences (R01ES019315 and P42ES005948). We would like to thank Caroline Brock Reed for her assistance with Fig. 1.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Lisa Smeester and Rebecca C. Fry declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mechanisms of Toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeester, L., Fry, R.C. Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Envir Health Rpt 5, 134–144 (2018). https://doi.org/10.1007/s40572-018-0184-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-018-0184-1

Keywords

Navigation