Skip to main content
Log in

Discharge characteristics of binary particles in a rectangular hopper with inclined bottom

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The stable discharge of particles through the hopper plays a key role in many industrial applications. In order to investigate the discharge characteristics of binary particles in a rectangular hopper with an inclined bottom, the discrete element method (DEM) was used to simulate the discharge process. The accuracy of DEM was validated by comparing calculated and experimental values. The influences of geometric parameters (hopper width, orifice width, and hopper angle) and particle parameters (friction coefficient between particles, friction coefficient between particles and wall, fine particle mass fraction, and particle size ratio) on the discharge were studied. Some interesting results have been found that the effect of hopper width on discharge is minimal. The mass discharge rate is linearly related to the 3/2 power of orifice width, and it can be predicted by the modified Beverloo correlation which developed for a rectangular hopper with flat bottom. The mass discharge rate increases exponentially with the decrease in hopper angle, which is different from that of monosized particles. The mass discharge rate is more sensitive to low friction coefficient, and the friction coefficient between particles plays a leading role. Fine particles can promote the discharge process, and this effect is enhanced as particle size ratio increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li Y, Xu Y, Jiang S (2009) DEM simulations and experiments of pebble flow with monosized spheres. Powder Technol 193(3):312–318. https://doi.org/10.1016/j.powtec.2009.03.009

    Article  Google Scholar 

  2. Ketterhagen WR, Hancock BC (2010) Optimizing the design of eccentric feed hoppers for tablet presses using DEM. Comput Chem Eng 34(7):1072–1081. https://doi.org/10.1016/j.compchemeng.2010.04.016

    Article  Google Scholar 

  3. Tao H, Jin B, Zhong W, Wang X, Ren B, Zhang Y, Xiao R (2010) Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem Eng Process 49(2):151–158. https://doi.org/10.1016/j.cep.2010.01.006

    Article  Google Scholar 

  4. Yu Y, Saxén H (2011) Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres. Adv Powder Technol 22(3):324–331. https://doi.org/10.1016/j.apt.2010.04.003

    Article  Google Scholar 

  5. Calderón CA, Villagrán Olivares MC, Uñac RO, Vidales AM (2017) Correlations between flow rate parameters and the shape of the grains in a silo discharge. Powder Technol 320:43–50. https://doi.org/10.1016/j.powtec.2017.07.004

    Article  Google Scholar 

  6. Johanson K (2004) Rathole stability analysis for aerated powder materials. Powder Technol 141(1):161–170. https://doi.org/10.1016/j.powtec.2004.02.004

    Article  Google Scholar 

  7. Oldal I, Keppler I, Csizmadia B, Fenyvesi L (2012) Outflow properties of silos: the effect of arching. Adv Powder Technol 23(3):290–297. https://doi.org/10.1016/j.apt.2011.03.013

    Article  Google Scholar 

  8. Nedderman RM, Tüzün U, Savage SB, Houlsby GT (1982) The flow of granular materials—I: discharge rates from hoppers. Chem Eng Sci 37(11):1597–1609. https://doi.org/10.1016/0009-2509(82)80029-8

    Article  Google Scholar 

  9. Artega P, Tüzün U (1990) Flow of binary mixtures of equal-density granules in hoppers—size segregation, flowing density and discharge rates. Chem Eng Sci 45(1):205–223. https://doi.org/10.1016/0009-2509(90)87093-8

    Article  Google Scholar 

  10. Ostendorf M, Schwedes J (2005) Application of particle image velocimetry for velocity measurements during silo discharge. Powder Technol 158(1):69–75. https://doi.org/10.1016/j.powtec.2005.04.020

    Article  Google Scholar 

  11. Uñac RO, Vidales AM, Benegas OA, Ippolito I (2012) Experimental study of discharge rate fluctuations in a silo with different hopper geometries. Powder Technol 225:214–220. https://doi.org/10.1016/j.powtec.2012.04.013

    Article  Google Scholar 

  12. Albaraki S, Antony SJ (2014) How does internal angle of hoppers affect granular flow? Experimental studies using digital particle image velocimetry. Powder Technol 268:253–260. https://doi.org/10.1016/j.powtec.2014.08.027

    Article  Google Scholar 

  13. Bacchuwar S, Vidyapati V, Quan K-m, Lin C-L, Miller JD (2019) Quantitative bin flow analysis of particle discharge using X-ray radiography. Powder Technol 344:693–705. https://doi.org/10.1016/j.powtec.2018.12.028

    Article  Google Scholar 

  14. Beverloo WA, Leniger HA, van de Velde J (1961) The flow of granular solids through orifices. Chem Eng Sci 15(3):260–269. https://doi.org/10.1016/0009-2509(61)85030-6

    Article  Google Scholar 

  15. Brown RL, Richards JC (1965) Kinematics of the flow of dry powders and bulk solids. Rheol Acta 4(3):153–165. https://doi.org/10.1007/bf01969251

    Article  Google Scholar 

  16. Myers M, Sellers M (1971) Chemical engineering, tripos part 2. Research Project Report, University of Cambridge

  17. Humby S, Tüzün U, Yu AB (1998) Prediction of hopper discharge rates of binary granular mixtures. Chem Eng Sci 53(3):483–494. https://doi.org/10.1016/S0009-2509(97)00326-6

    Article  Google Scholar 

  18. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  19. Bayesteh H, Ghasempour T (2019) Role of the location and size of soluble particles in the mechanical behavior of collapsible granular soil: a DEM simulation. Comput Part Mech 6(3):327–341. https://doi.org/10.1007/s40571-018-00216-x

    Article  Google Scholar 

  20. Cleary PW (2019) Effect of rock shape representation in DEM on flow and energy utilisation in a pilot SAG mill. Comput Part Mech 6(3):461–477. https://doi.org/10.1007/s40571-019-00226-3

    Article  Google Scholar 

  21. Langston PA, Tüzün U, Heyes DM (1995) Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem Eng Sci 50(6):967–987. https://doi.org/10.1016/0009-2509(94)00467-6

    Article  Google Scholar 

  22. González-Montellano C, Ramírez Á, Gallego E, Ayuga F (2011) Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem Eng Sci 66(21):5116–5126. https://doi.org/10.1016/j.ces.2011.07.009

    Article  Google Scholar 

  23. Masson S, Martinez J (2000) Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol 109(1):164–178. https://doi.org/10.1016/S0032-5910(99)00234-X

    Article  Google Scholar 

  24. Yang S-C, Hsiau S-S (2001) The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technol 120(3):244–255. https://doi.org/10.1016/S0032-5910(01)00277-7

    Article  Google Scholar 

  25. Chou C-S, Lee A-F, Yeh C-K (2009) Placement of a non-isosceles-triangle insert in an asymmetrical two-dimensional bin-hopper. Adv Powder Technol 20(1):80–88. https://doi.org/10.1016/j.apt.2008.03.001

    Article  Google Scholar 

  26. Goda TJ, Ebert F (2005) Three-dimensional discrete element simulations in hoppers and silos. Powder Technol 158(1):58–68. https://doi.org/10.1016/j.powtec.2005.04.019

    Article  Google Scholar 

  27. Anand A, Curtis JS, Wassgren CR, Hancock BC, Ketterhagen WR (2008) Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM). Chem Eng Sci 63(24):5821–5830. https://doi.org/10.1016/j.ces.2008.08.015

    Article  Google Scholar 

  28. Anand A, Curtis JS, Wassgren CR, Hancock BC, Ketterhagen WR (2009) Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chem Eng Sci 64(24):5268–5275. https://doi.org/10.1016/j.ces.2009.09.001

    Article  Google Scholar 

  29. Balevičius R, Kačianauskas R, Mróz Z, Sielamowicz I (2011) Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Adv Powder Technol 22(2):226–235. https://doi.org/10.1016/j.apt.2010.12.005

    Article  Google Scholar 

  30. Höhner D, Wirtz S, Scherer V (2012) A numerical study on the influence of particle shape on hopper discharge within the polyhedral and multi-sphere discrete element method. Powder Technol 226:16–28. https://doi.org/10.1016/j.powtec.2012.03.041

    Article  Google Scholar 

  31. Höhner D, Wirtz S, Scherer V (2013) Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol 235:614–627. https://doi.org/10.1016/j.powtec.2012.11.004

    Article  Google Scholar 

  32. Liu SD, Zhou ZY, Zou RP, Pinson D, Yu AB (2014) Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol 253(Supplement C):70–79. https://doi.org/10.1016/j.powtec.2013.11.001

    Article  Google Scholar 

  33. Höhner D, Wirtz S, Scherer V (2015) A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method. Powder Technol 278:286–305. https://doi.org/10.1016/j.powtec.2015.02.046

    Article  Google Scholar 

  34. Gui N, Yang X, Tu J, Jiang S (2017) Effect of roundness on the discharge flow of granular particles. Powder Technol 314:140–147. https://doi.org/10.1016/j.powtec.2016.09.056

    Article  Google Scholar 

  35. Khazeni A, Mansourpour Z (2018) Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technol 332:265–278. https://doi.org/10.1016/j.powtec.2018.03.030

    Article  Google Scholar 

  36. Tangri H, Guo Y, Curtis JS (2019) Hopper discharge of elongated particles of varying aspect ratio: experiments and DEM simulations. Chem Eng Sci X 4:100040. https://doi.org/10.1016/j.cesx.2019.100040

    Article  Google Scholar 

  37. Wang P, Zhu L, Zhu X (2016) Flow pattern and normal pressure distribution in flat bottom silo discharged using wall outlet. Powder Technol 295:104–114. https://doi.org/10.1016/j.powtec.2016.03.036

    Article  Google Scholar 

  38. Wan J, Wang F, Yang G, Zhang S, Wang M, Lin P, Yang L (2018) The influence of orifice shape on the flow rate: a DEM and experimental research in 3D hopper granular flows. Powder Technol 335:147–155. https://doi.org/10.1016/j.powtec.2018.03.041

    Article  Google Scholar 

  39. Xue J, Schiano S, Zhong W, Chen L, Wu C-Y (2018) Determination of the flow/no-flow transition from a flat bottom hopper. Powder Technol. https://doi.org/10.1016/j.powtec.2018.08.063

    Article  Google Scholar 

  40. Zhang Y, Jia F, Zeng Y, Han Y, Xiao Y (2018) DEM study in the critical height of flow mechanism transition in a conical silo. Powder Technol 331:98–106. https://doi.org/10.1016/j.powtec.2018.03.024

    Article  Google Scholar 

  41. Ge L, Gui N, Yang X, Tu J, Jiang S (2019) Effects of aspect ratio and component ratio on binary-mixed discharging pebble flow in hoppers. Powder Technol 355:320–332. https://doi.org/10.1016/j.powtec.2019.07.045

    Article  Google Scholar 

  42. Ji S, Wang S, Peng Z (2019) Influence of external pressure on granular flow in a cylindrical silo based on discrete element method. Powder Technol 356:702–714. https://doi.org/10.1016/j.powtec.2019.08.083

    Article  Google Scholar 

  43. Liu H, Jia F, Xiao Y, Han Y, Li G, Li A, Bai S (2019) Numerical analysis of the effect of the contraction rate of the curved hopper on flow characteristics of the silo discharge. Powder Technol 356:858–870. https://doi.org/10.1016/j.powtec.2019.09.033

    Article  Google Scholar 

  44. Zaki M, Siraj MS (2019) Study of a flat-bottomed cylindrical silo with different orifice shapes. Powder Technol 354:641–652. https://doi.org/10.1016/j.powtec.2019.06.041

    Article  Google Scholar 

  45. Zhao Y, Yang S, Zhang L, Chew JW (2019) Understanding the varying discharge rates of lognormal particle size distributions from a hopper using the discrete element method. Powder Technol 342:356–370. https://doi.org/10.1016/j.powtec.2018.09.080

    Article  Google Scholar 

  46. Wang Y, Lu Y, Ooi JY (2013) Numerical modelling of dynamic pressure and flow in hopper discharge using the arbitrary Lagrangian–Eulerian formulation. Eng Struct 56:1308–1320. https://doi.org/10.1016/j.engstruct.2013.07.006

    Article  Google Scholar 

  47. Wang Y, Lu Y, Ooi JY (2015) A numerical study of wall pressure and granular flow in a flat-bottomed silo. Powder Technol 282:43–54. https://doi.org/10.1016/j.powtec.2015.01.078

    Article  Google Scholar 

  48. Zheng QJ, Xia BS, Pan RH, Yu AB (2017) Prediction of mass discharge rate in conical hoppers using elastoplastic model. Powder Technol 307(Supplement C):63–72. https://doi.org/10.1016/j.powtec.2016.11.037

    Article  Google Scholar 

  49. Huang X, Zheng Q, Yu A, Yan W (2019) Shape optimization of conical hoppers to increase mass discharging rate. Powder Technol. https://doi.org/10.1016/j.powtec.2019.09.043

    Article  Google Scholar 

  50. Ketterhagen WR, Curtis JS, Wassgren CR (2005) Stress results from two-dimensional granular shear flow simulations using various collision models. Phys Rev E 71(6):061307. https://doi.org/10.1103/PhysRevE.71.061307

    Article  Google Scholar 

  51. Hertz H (1882) On the contact of elastic solids. J Reine Angew Math 92:156–171

    MathSciNet  MATH  Google Scholar 

  52. Mindlin RD (1949) Compliance of elastic bodies in contact. J Appl Mech 16(3):259–268

    MathSciNet  MATH  Google Scholar 

  53. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20(3):327–344

    MathSciNet  MATH  Google Scholar 

  54. Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71(3):239–250. https://doi.org/10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  55. Sakaguchi H, Ozaki E, Igarashi T (1993) Plugging of the flow of granular materials during the discharge from a silo. Int J Mod Phys B 7:1949–1963

    Article  Google Scholar 

  56. Zeng Y, Jia F, Zhang Y, Meng X, Han Y, Wang H (2017) DEM study to determine the relationship between particle velocity fluctuations and contact force disappearance. Powder Technol 313:112–121. https://doi.org/10.1016/j.powtec.2017.03.022

    Article  Google Scholar 

  57. Nedderman RM, Laohakul C (1980) The thickness of the shear zone of flowing granular materials. Powder Technol 25(1):91–100. https://doi.org/10.1016/0032-5910(80)87014-8

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by National Key R&D Program of China (2017YFB0603504-2) and Shandong Provincial Natural Science Foundation, China (ZR2017LEE019 and ZR2014EL030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, Y., Zheng, B. et al. Discharge characteristics of binary particles in a rectangular hopper with inclined bottom. Comp. Part. Mech. 8, 315–324 (2021). https://doi.org/10.1007/s40571-020-00332-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00332-7

Keywords

Navigation