Skip to main content

Advertisement

Log in

TOMM40 and APOE variants synergistically increase the risk of Alzheimer’s disease in a Chinese population

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

The apolipoprotein E (APOE) ε4 allele is a strong risk factor for Alzheimer’s disease (AD) in Caucasian and African American populations. It suggests that other genetic factors may modulate AD pathogenesis in Chinese populations, among which the frequency of this allele is reduced but the AD prevalence is maintained. The translocase of outer mitochondrial membrane 40 (TOMM40), which is located adjacent to APOE, may play an APOE-dependent role in modulating AD pathogenesis.

Aims

This work aimed to investigate whether TOMM40 polymorphisms modulate AD risk independently of, or in conjunction with APOE polymorphisms in Chinese populations.

Methods

We conducted a case–control study including 834 patients with AD recruited from the Memory Clinic and 643 cognitively normal participants recruited from the community. The Taqman SNP method was used for APOE genotyping, while TOMM40 polymorphism genotyping was conducted via a polymerase chain reaction-ligase detection reaction.

Results

The TOMM40 rs10119 and rs71352238 alleles were associated with AD independently of the patient APOE status. The rs10119 AA genotype and rs71352238 CC genotype were risk genotypes of AD. Individuals carrying a TOMM40 rs10119 GG/APOE ε4+ (OR, 3.73; 95% CI 1.49-9.37; P = 0.005), TOMM40 rs10119 AG/APOE ε4+ (OR, 4.16; 95% CI 3.30-5.24; P < 0.001), or TOMM40 rs10119 AA/APOE ε4+ (OR, 14.78; 95% CI 8.56-25.54; P < 0.001) genotype exhibited a significantly higher AD risk. Those carrying a TOMM40 rs71352238 TT/APOE ε4+ (OR, 3.82; 95% CI 2.32-6.29; P < 0.001), TOMM40 rs71352238 CT/APOE ε4+ (OR, 4.40; 95% CI 3.46-5.56; P < 0.001), or TOMM40 rs71352238 CC/APOE ε4+ (OR, 14.02; 95% CI 7.81-25.17; P < 0.001) genotype also exhibited a significantly increased AD risk.

Discussion and conclusions

This study provides invaluable insights into the mechanisms underlying the prevalence of AD in Chinese populations, and supports that simultaneous TOMM40 and APOE genotyping in the clinical setting may identify individuals at high risk of developing AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hu P, Qing YH, Jing CX et al (2011) Does the geographical gradient of ApoE4 allele exist in China? A systemic comparison among multiple Chinese populations. Mol Biol Rep 38:489–494. https://doi.org/10.1007/s11033-010-0132-0

    Article  CAS  PubMed  Google Scholar 

  2. Liang S, Pan M, Geng HH et al (2009) Apolipoprotein E polymorphism in normal Han Chinese population: frequency and effect on lipid parameters. Mol Biol Rep 36:1251–1256. https://doi.org/10.1007/s11033-008-9305-5

    Article  CAS  PubMed  Google Scholar 

  3. Katzman R, Zhang MY, Chen PJ et al (1997) Effects of apolipoprotein E on dementia and aging in the Shanghai Survey of Dementia. Neurology 49:779–785. https://doi.org/10.1212/wnl.49.3.779

    Article  CAS  PubMed  Google Scholar 

  4. Jun G, Naj A, Beecham GW et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer’s disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67:1473–1484. https://doi.org/10.1001/archneurol.2010.201

    Article  PubMed  PubMed Central  Google Scholar 

  5. Prince M, Wimo A, Guerchet M et al (2015) World Alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer’s Disease International, London

    Google Scholar 

  6. Lobo A, Launer LJ, Fratiglioni L et al (2000) Prevalence of dementia and major subtypes in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54:S4–S9

    Article  CAS  Google Scholar 

  7. Swerdlow RH, Khan SM (2009) The Alzheimer’s disease mitochondrial cascade hypothesis: an update. Exp Neurol 218:308–315. https://doi.org/10.1016/j.expneurol.2009.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marioni RE, Harris SE, Zhang Q et al (2019) GWAS on family history of Alzheimer’s disease. Transl Psychiatry 9:161. https://doi.org/10.1038/s41398-018-0150-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lehallier B, Essioux L, Gayan J et al (2016) Combined plasma and cerebrospinal fluid signature for the prediction of midterm progression from mild cognitive impairment to Alzheimer Disease. JAMA Neurol 73:203–212. https://doi.org/10.1001/jamaneurol.2015.3135

    Article  PubMed  Google Scholar 

  10. Ding D, Zhao Q, Guo Q et al (2014) The Shanghai aging study: study design, baseline characteristics, and prevalence of dementia. Neuroepidemiology 43:114–122. https://doi.org/10.1159/000366163

    Article  PubMed  Google Scholar 

  11. Lim WS, Chong MS, Sahadevan S (2007) Utility of the clinical dementia rating in Asian populations. Clin Med Res 5:61–70. https://doi.org/10.3121/cmr.2007.693

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186

    Article  CAS  Google Scholar 

  13. McKhann G, Drachman D, Folstein M et al (1984) Clinical-diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944. https://doi.org/10.1212/wnl.34.7.939

    Article  CAS  PubMed  Google Scholar 

  14. Cervantes S, Samaranch L, Vidal-Taboada JM et al (2011) Genetic variation in APOE cluster region and Alzheimer’s disease risk. Neurobiol Aging 32:2107.e7–2107.e17. https://doi.org/10.1016/j.neurobiolaging.2011.05.023

    Article  CAS  Google Scholar 

  15. Ma XY, Yu JT, Wang W et al (2013) Association of TOMM40 polymorphisms with late-onset Alzheimer’s disease in a Northern Han Chinese population. Neuromol Med 15:279–287. https://doi.org/10.1007/s12017-012-8217-7

    Article  CAS  Google Scholar 

  16. He Y, Li C, Yang Y et al (2016) Meta-analysis of the rs2075650 polymorphism and risk of Alzheimer disease. Aging Clin Exp Res 28:805–811. https://doi.org/10.1007/s40520-015-0489-y

    Article  PubMed  Google Scholar 

  17. Maruszak A, Pepłońska B, Safranow K et al (2012) TOMM40 rs10524523 polymorphism’s role in late-onset Alzheimer’s disease and in longevity. J Alzheimers Dis. 28:309–322. https://doi.org/10.3233/JAD-2011-110743

    Article  CAS  PubMed  Google Scholar 

  18. Liu X, Bai F, Yue C et al (2014) The association between TOMM40 gene polymorphism and spontaneous brain activity in amnestic mild cognitive impairment. J Neurol 261:1499–1507. https://doi.org/10.1007/s00415-014-7368-x

    Article  CAS  PubMed  Google Scholar 

  19. Smirnov DA, Morley M, Shin E et al (2009) Genetic analysis of radiation-induced changes in human gene expression. Nature 459:587–591. https://doi.org/10.1038/nature07940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamazaki Y, Zhao N, Caulfield TR et al (2019) Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 15:501–518. https://doi.org/10.1038/s41582-019-0228-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu WY, Sun X, Wadelius M et al (2016) Influence of APOE Gene polymorphism on interindividual and interethnic warfarin dosage requirement: a systematic review and meta-analysis apolipoprotein E and Alzheimer disease. Cardiovasc Ther 34:297–307. https://doi.org/10.1111/1755-5922.12186

    Article  CAS  PubMed  Google Scholar 

  22. Lutz MW, Crenshaw D, Welsh-Bohmer KA et al (2016) New genetic approaches to AD: lessons from APOE-TOMM40 phylogenetics. Curr Neurol Neurosci Rep 16:48. https://doi.org/10.1007/s11910-016-0643-8

    Article  PubMed  Google Scholar 

  23. Petschner P, Gonda X, Baksa D et al (2018) Genes linking mitochondrial function, cognitive impairment and depression are associated with endophenotypes serving precision medicine. Neuroscience 370:207–217. https://doi.org/10.1016/j.neuroscience.2017.09.049

    Article  CAS  PubMed  Google Scholar 

  24. Cheng A, Hou Y, Mattson MP (2010) Mitochondria and neuroplasticity. ASN Neuro 2:e00045. https://doi.org/10.1042/AN20100019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prendecki M, Florczak-Wyspianska J, Kowalska M et al (2018) Biothiols and oxidative stress markers and polymorphisms of TOMM40 and APOC1 genes in Alzheimer’s disease patients. Oncotarget 9:35207–35225. https://doi.org/10.18632/oncotarget.26184

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huang H, Zhao J, Xu B et al (2016) The TOMM40 gene rs2075650 polymorphism contributes to Alzheimer’s disease in Caucasian, and Asian populations. Neurosci Lett 628:142–146. https://doi.org/10.1016/j.neulet.2016.05.050

    Article  CAS  PubMed  Google Scholar 

  27. Chung SJ, Lee JH, Kim SY et al (2013) Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord 27:250–257. https://doi.org/10.1097/WAD.0b013e31826d7281

    Article  CAS  PubMed  Google Scholar 

  28. Bagnoli S, Piaceri I, Tedde A et al (2013) TOMM40 polymorphisms in Italian Alzheimer’s disease and frontotemporal dementia patients. Neurol Sci 34:995–998. https://doi.org/10.1007/s10072-013-1425-6

    Article  PubMed  Google Scholar 

  29. McFarquhar M, Elliott R, McKie S et al (2014) TOMM40 rs2075650 may represent a new candidate gene for vulnerability to major depressive disorder. Neuropsychopharmacology 39:1743–1753. https://doi.org/10.1038/npp.2014.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korthauer LE, Awe E, Frahmand M et al (2018) Genetic risk for age-related cognitive impairment does not predict cognitive performance in middle age. J Alzheimers Dis 64:459–471. https://doi.org/10.3233/JAD-171043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lyall DM, Harris SE, Bastin ME et al (2014) Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiol Aging 35:1513. https://doi.org/10.1016/j.neurobiolaging.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lutz MW, Crenshaw DG, Saunders AM et al (2010) Genetic variation at a single locus and age of onset for Alzheimer’s disease. Alzheimers Dement 6:125–131. https://doi.org/10.1016/j.jalz.2010.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiao B, Liu X, Zhou L et al (2015) Polygenic analysis of late-onset Alzheimer’s Disease from Mainland China. PLoS ONE 10:e0144898. https://doi.org/10.1371/journal.pone.0144898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gottschalk WK, Lutz MW, Hce YT et al (2014) The broad impact of TOM40 on neurodegenerative diseases in aging. J Parkinsons Dis Alzheimers Dis. https://doi.org/10.13188/2376-922X.1000003

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bender A, Desplats P, Spencer B et al (2013) TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson’s disease. PLoS ONE 8:e62277. https://doi.org/10.1371/journal.pone.0062277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Roses A, Sundseth S, Saunders A et al (2016) Understanding the genetics of APOE and TOMM40 and role of mitochondrial structure and function in clinical pharmacology of Alzheimer’s disease. Alzheimers Dement 12:687–694. https://doi.org/10.1016/j.jalz.2016.03.015

    Article  PubMed  Google Scholar 

  37. Roses AD (2010) An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease. Arch Neurol 67:536–541. https://doi.org/10.1001/archneurol.2010.88

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhou X, Chen Y, Mok KY et al (2019) Non-coding variability at the APOE locus contributes to the Alzheimer’s risk. Nat Commun 10:3310. https://doi.org/10.1038/s41467-019-10945-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kulminski AM, Shu L, Loika Y et al (2020) APOE region molecular signatures of Alzheimer’s disease across races/ethnicities. Neurobiol Aging 87:141.e1–141.e8. https://doi.org/10.1016/j.neurobiolaging.2019.11.007

    Article  CAS  Google Scholar 

  40. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781. https://doi.org/10.1126/science.1132814

    Article  CAS  Google Scholar 

  41. Roses AD, Saunders AM (2006) Perspective on a pathogenesis and treatment of Alzheimer’s disease. Alzheimer’s Dementia 2:59–70. https://doi.org/10.1016/j.jalz.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  42. Seripa D, Bizzarro A, Pilotto A et al (2012) TOMM40, APOE, and APOC1 in primary progressive aphasia and frontotemporal dementia. J Alzheimers Dis 31:731–740. https://doi.org/10.3233/JAD-2012-120403

    Article  CAS  PubMed  Google Scholar 

  43. Nishimura A, Nonomura H, Tanaka S et al (2017) Characterization of APOE and TOMM40 allele frequencies in the Japanese population. Alzheimers Dement (N Y) 3:524–530. https://doi.org/10.1016/j.trci.2017.07.003

    Article  Google Scholar 

  44. Yu L, Lutz MW, Wilson RS et al (2017) APOE epsilon4-TOMM40 ‘523 haplotypes and the risk of Alzheimer’s disease in older Caucasian and African Americans. PLoS ONE 12:e0180356. https://doi.org/10.1371/journal.pone.0180356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindqvist D, Prokopenko I, Londos E et al (2016) Associations between TOMM40 Poly-T repeat variants and Dementia in cases with Parkinsonism. J Parkinsons Dis 6:99–108. https://doi.org/10.3233/JPD-150693

    Article  CAS  PubMed  Google Scholar 

  46. Crenshaw DG, Gottschalk WK, Lutz MW et al (2013) Using genetics to enable studies on the prevention of Alzheimer’s Disease. Clin PharmacolTher 93:177–185. https://doi.org/10.1038/clpt.2012.222

    Article  CAS  Google Scholar 

  47. Liu J, Zhao W, Ware EB et al (2018) DNA methylation in the APOE genomic region is associated with cognitive function in African Americans. BMC Med Genomics 11:43. https://doi.org/10.1186/s12920-018-0363-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank all the study coordinators, research nurses, psychometrists, and lab technicians for their efforts to this study, and all the participants for their cooperation.

Funding

This work was supported by grants of National Natural Science Foundation of China (81773513), Scientific Research Projects from Shanghai Science and Technology Municipality (STCSM) (17411950106, 17411950701), Shanghai Brain-Intelligence Project from STCSM (16JC1420500), Natural Science Foundation and Major Basic Research Program of Shanghai (16JC1420100), National Chronic Disease Project (2016YFC1306402), STCSM Major Project (2018SHZDZX01), ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, and the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University.

Author information

Authors and Affiliations

Authors

Contributions

QZ and DD conceived and designed the project. QZ, ZX, WW, XL, QG recruited patients and collected samples from patients and healthy controls. ZZ, YY, QZ, MS, and DD conceived and decided the experiments, and revised the manuscript. ZZ and YY performed the experiments and wrote the manuscript. ZX assisted literature searching and manuscript formatting. YY, JL and YC provided analyzing genomic data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qianhua Zhao.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Statement of human rights

All human rights were respected.

Ethics approval

All subjects (or their legal guardians) provided written informed consent for their participation in the study, which was approved by the Medical Ethics Committee of Huashan Hospital, Fudan University, Shanghai, China.

Informed consent

All participants have signed written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Yang, Y., Xiao, Z. et al. TOMM40 and APOE variants synergistically increase the risk of Alzheimer’s disease in a Chinese population. Aging Clin Exp Res 33, 1667–1675 (2021). https://doi.org/10.1007/s40520-020-01661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-020-01661-6

Keywords

Navigation