Skip to main content

Advertisement

Log in

Molecular Imaging Techniques in the Diagnosis and Monitoring of Infectious Diseases

  • Review
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose of Review

Combined positron emission tomography and computer tomography with 2-deoxy-[fluorine-18]-flouro-D-glucose ([18F]FDG-PET/CT) is increasingly used in suspected infection and inflammation. Evidence is mounting within several areas. We believe [18F]FDG-PET/CT is a key modality in infection and inflammation and this overview outlines the diagnostic values in most common uses within this domain.

Recent Findings

[18F]FDG-PET/CT is considered helpful in establishing the underlying disease in 50–60% of FUO patients. In patients with complex blood stream infections, [18F]FDG-PET/CT changes treatment and reduces relapse rates and mortality—if scans are negative prognosis is favorable and it may be safe to withhold or de-escalate treatment strategy. In infectious endocarditis, [18F]FDG-PET/CT has an impact in prosthetic valve endocarditis and cardiovascular implantable electronic devices whereas its diagnostic use in NVE is limited. In spondylodiscitis, [18F]FDG-PET/CT and MRI have overall equally and complementary diagnostic performance with combined sensitivity and specificity of ~ 100%. In vascular graft infections, [18F]F DG-PET/CT is highly sensitive (> 90%) with a high negative predictive value, whereas false positive findings are challenging, especially early post-operative. Leucocyte scintigraphy combined with bone marrow scintigraphy has a better overall accuracy compared to [18F]FDG-PET/CT in suspected hip and knee prosthetic joint infections, but several practical issues favor [18F]FDG-PET/CT. Future developments of more specific tracers and novel scanner technology holds potential.

Summary

Evidence for [18F]FDG-PET/CT in infectious and inflammatory disease supports the use in fever of unknown origin, bloodstream infections, spondylodiscitis, infective endocarditis, vascular graft infections, and prosthetic joint infections. However, the literature is generally heterogeneous and several issues remain unclarified, e.g., patient selection and interpretation criteria. [18F]FDG-PET/CT has a definite role in infectious and inflammatory imaging, but firm evidence is still lacking on its precise place in the diagnostic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Palestro CJ. A brief history of nuclear medicine imaging of infection. J Infect Dis. 2023;228(Suppl 4):S237–40. https://doi.org/10.1093/infdis/jiac466.

    Article  PubMed  Google Scholar 

  2. Basu S, Hess S, Nielsen Braad PE, Olsen BB, Inglev S, Hoilund-Carlsen PF. The basic principles of FDG-PET/CT imaging. PET Clin. 2014;9(4):355–70. https://doi.org/10.1016/j.cpet.2014.07.006.

    Article  PubMed  Google Scholar 

  3. Gormsen LC, Hess S. Challenging but clinically useful: fluorodeoxyglucose PET/computed tomography in inflammatory and infectious diseases. PET Clin. 2020;15(2):xi–xii. https://doi.org/10.1016/j.cpet.2020.01.002.

    Article  PubMed  Google Scholar 

  4. Wright WF, Mulders-Manders CM, Auwaerter PG, Bleeker-Rovers CP. Fever of unknown origin (FUO) - a call for new research standards and updated clinical management. Am J Med. 2022;135(2):173–8. https://doi.org/10.1016/j.amjmed.2021.07.038.

    Article  PubMed  Google Scholar 

  5. Hess S. FDG-PET/CT in fever of unknown origin, bacteremia, and febrile neutropenia. PET Clin. 2020;15(2):175–85. https://doi.org/10.1016/j.cpet.2019.11.002.

    Article  Google Scholar 

  6. Erdem H, Baymakova M, Alkan S, Letaief A, Yahia WB, Dayyab F, et al. Classical fever of unknown origin in 21 countries with different economic development: an international ID-IRI study. Eur J Clin Microbiol Infect Dis: Off Publ Eur Soc Clin Microbiol. 2023;42(4):387–98. https://doi.org/10.1007/s10096-023-04561-5.

    Article  Google Scholar 

  7. Bharucha T, Rutherford A, Skeoch S, Alavi A, Brown M, Galloway J. Diagnostic yield of FDG-PET/CT in fever of unknown origin: a systematic review, meta-analysis, and Delphi exercise. Clin Radiol. 2017;72(9):764–71. https://doi.org/10.1016/j.crad.2017.04.014.

    Article  CAS  PubMed  Google Scholar 

  8. Yadav BK, Pannu AK, Kumar R, Rohilla M, Kumari S. Fever of unknown origin in older adults: a prospective observational study from North India. J Assoc Phys India. 2021;69(10):11–2.

    Google Scholar 

  9. Betrains A, Boeckxstaens L, Moreel L, Wright WF, Blockmans D, Van Laere K, et al. Higher diagnostic yield of 18F-FDG PET in inflammation of unknown origin compared to fever of unknown origin. Eur J Intern Med. 2023;110:71–6. https://doi.org/10.1016/j.ejim.2023.01.025.

    Article  CAS  Google Scholar 

  10. • van Rijsewijk ND, Ffa IJ, Wouthuyzen-Bakker M, Glaudemans A. Molecular imaging of fever of unknown origin: an update. Sem Nucl Med. 2023;53(1):4–17. https://doi.org/10.1053/j.semnuclmed.2022.07.002. An excellent overview of the clinical value of molecular imaging in FUO based on a systematic literature review.

    Article  Google Scholar 

  11. Wahl RL, Dilsizian V, Palestro CJ. At Last, (18)F-FDG for inflammation and infection! J Nucl Med: Off Publ Soc Nucl Med. 2021;62(8):1048–9. https://doi.org/10.2967/jnumed.121.262446.

    Article  Google Scholar 

  12. Li Q, Tian R, Wang H, Li L, Wu T, Ren Y, et al. Quantifying the contribution of (18)F-FDG PET to the diagnostic assessment of pediatric patients with fever of unknown origin: a systematic review and meta-analysis. Pediatr Radiol. 2022;52(8):1500–11. https://doi.org/10.1007/s00247-022-05333-7.

    Article  PubMed  Google Scholar 

  13. Dong MJ, Zhao K, Liu ZF, Wang GL, Yang SY, Zhou GJ. A meta-analysis of the value of fluorodeoxyglucose-PET/PET-CT in the evaluation of fever of unknown origin. Eur J Radiol. 2011;80(3):834–44. https://doi.org/10.1016/j.ejrad.2010.11.018.

    Article  PubMed  Google Scholar 

  14. Gafter-Gvili A, Raibman S, Grossman A, Avni T, Paul M, Leibovici L, et al. [18F]FDG-PET/CT for the diagnosis of patients with fever of unknown origin. QJM : Monthly J Assoc Phys. 2015;108(4):289–98. https://doi.org/10.1093/qjmed/hcu193.

    Article  CAS  Google Scholar 

  15. Palestro CJ, Brandon DC, Dibble EH, Keidar Z, Kwak JJ. FDG PET in evaluation of patients with fever of unknown origin: AJR expert panel narrative review. AJR Am J Roentgenol. 2023;221(2):151–62. https://doi.org/10.2214/ajr.22.28726.

    Article  PubMed  Google Scholar 

  16. Takeuchi M, Nihashi T, Gafter-Gvili A, Garcia-Gomez FJ, Andres E, Blockmans D, et al. Association of 18F-FDG PET or PET/CT results with spontaneous remission in classic fever of unknown origin: a systematic review and meta-analysis. Medicine. 2018;97(43):e12909. https://doi.org/10.1097/md.0000000000012909.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keidar Z, Gurman-Balbir A, Gaitini D, Israel O. Fever of unknown origin: the role of 18F-FDG PET/CT. J Nucl Med. 2008;49(12):1980–5. https://doi.org/10.2967/jnumed.108.054692.

    Article  PubMed  Google Scholar 

  18. • Hess S. [18F]FDG-PET/CT in patients with bacteremia: clinical impact on patient management and outcome. Front Med. 2023;10. https://doi.org/10.3389/fmed.2023.1157692. A comprehensive overview of the role of [18F]FDG-PET/CT in bloodstream infections.

  19. Brondserud MB, Pedersen C, Rosenvinge FS, Hoilund-Carlsen PF, Hess S. Clinical value of FDG-PET/CT in bacteremia of unknown origin with catalase-negative Gram-positive cocci or Staphylococcus aureus. Eur J Nucl Med Mol Imaging. 2019;46(6):1351–8. https://doi.org/10.1007/s00259-019-04289-5.

    Article  PubMed  Google Scholar 

  20. Tsai HY, Lee MH, Wan CH, Yang LY, Yen TC, Tseng JR. C-reactive protein levels can predict positive (18)F-FDG PET/CT findings that lead to management changes in patients with bacteremia. J Microbiol Immunol Infect = Wei Mian Yu Gan Ran Za Zhi. 2018;51(6):839–46. https://doi.org/10.1016/j.jmii.2018.08.003.

    Article  CAS  PubMed  Google Scholar 

  21. Vos FJ, Bleeker-Rovers CP, Sturm PD, Krabbe PF, van Dijk AP, Cuijpers ML, et al. 18F-FDG PET/CT for detection of metastatic infection in gram-positive bacteremia. J Nucl Med: Off Publ Soc Nucl Med. 2010;51(8):1234–40. https://doi.org/10.2967/jnumed.109.072371.

    Article  Google Scholar 

  22. Berrevoets MAH, Kouijzer IJE, Aarntzen E, Janssen MJR, De Geus-Oei LF, Wertheim HFL, et al. (18)F-FDG PET/CT optimizes treatment in Staphylococcus aureus bacteremia and is associated with reduced mortality. J Nucl Med: Off Publ Soc Nucl Med. 2017;58(9):1504–10. https://doi.org/10.2967/jnumed.117.191981.

    Article  CAS  Google Scholar 

  23. • Lapa C, Rischpler C, Bundschuh RA, Dierks A, Lang S, Wassilew G, et al. Value of [18F]FDG PET/CT in diagnosis and management of spondylodiscitis. Z Orthop Unfall. 2023;161(5):544–51. https://doi.org/10.1055/a-2075-8873. A good contemporary review on the value of [18F]FDG-PET/CT in spondylodiscitis.

    Article  PubMed  Google Scholar 

  24. Lazzeri E, Bozzao A, Cataldo MA, Petrosillo N, Manfrè L, Trampuz A, et al. Joint EANM/ESNR and ESCMID-endorsed consensus document for the diagnosis of spine infection (spondylodiscitis) in adults. Eur J Nucl Med Mol Imaging. 2019;46(12):2464–87. https://doi.org/10.1007/s00259-019-04393-6.

    Article  PubMed  Google Scholar 

  25. Paez D, Sathekge MM, Douis H, Giammarile F, Fatima S, Dhal A, et al. Comparison of MRI, [(18)F]FDG PET/CT, and (99m)Tc-UBI 29–41 scintigraphy for postoperative spondylodiscitis-a prospective multicenter study. Eur J Nucl Med Mol Imaging. 2021;48(6):1864–75. https://doi.org/10.1007/s00259-020-05109-x.

    Article  CAS  PubMed  Google Scholar 

  26. Smids C, Kouijzer IJ, Vos FJ, Sprong T, Hosman AJ, de Rooy JW, et al. A comparison of the diagnostic value of MRI and (18)F-FDG-PET/CT in suspected spondylodiscitis. Infection. 2017;45(1):41–9. https://doi.org/10.1007/s15010-016-0914-y.

    Article  PubMed  Google Scholar 

  27. Delgado V, Ajmone Marsan N, de Waha S, Bonaros N, Brida M, Burri H, et al. 2023 ESC guidelines for the management of endocarditis. Eur Heart J. 2023;44(39):3948–4042. https://doi.org/10.1093/eurheartj/ehad193.

    Article  PubMed  Google Scholar 

  28. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128. https://doi.org/10.1093/eurheartj/ehv319.

    Article  PubMed  Google Scholar 

  29. Yen R-F, Chen Y-C, Wu Y-W, Pan M-H, Chang S-C. Using 18-fluoro-2-deoxyglucose positron emission tomography in detecting infectious endocarditis/endoarteritis. Acad Radiol. 2004;11(3):316–21. https://doi.org/10.1016/s1076-6332(03)00715-3.

    Article  PubMed  Google Scholar 

  30. Wang TKM, Sánchez-Nadales A, Igbinomwanhia E, Cremer P, Griffin B, Xu B. Diagnosis of infective endocarditis by subtype using (18)F-fluorodeoxyglucose positron emission tomography/computed tomography: a contemporary meta-analysis. Circ Cardiovasc Imaging. 2020;13(6):e010600. https://doi.org/10.1161/circimaging.120.010600.

    Article  PubMed  Google Scholar 

  31. • Boczar KE, Lau L, Hejji N, Wiefels C. Infective endocarditis: the role of PET imaging in diagnosis and management. J Med Imaging Radiat Sci. 2024. https://doi.org/10.1016/j.jmir.2023.12.012. A very good contemporary review on the value of [18F]FDG-PET/CT in spondylodiscitis.

    Article  PubMed  Google Scholar 

  32. Hess S, Scholtens AM, Gormsen LC. Patient preparation and patient-related challenges with FDG-PET/CT in infectious and inflammatory disease. PET Clin. 2020;15(2):125–34. https://doi.org/10.1016/j.cpet.2019.11.001.

    Article  PubMed  Google Scholar 

  33. Chakfé N, Diener H, Lejay A, Assadian O, Berard X, Caillon J, et al. Editor’s Choice - European Society for Vascular Surgery (ESVS) 2020 clinical practice guidelines on the management of vascular graft and endograft infections. Eur J Vasc Endovasc Surg: Off J Eur Soc Vasc Surg. 2020;59(3):339–84. https://doi.org/10.1016/j.ejvs.2019.10.016.

    Article  Google Scholar 

  34. Lauri C, Signore A, Glaudemans A, Treglia G, Gheysens O, Slart R, et al. Evidence-based guideline of the European Association of Nuclear Medicine (EANM) on imaging infection in vascular grafts. Eur J Nucl Med Mol Imaging. 2022;49(10):3430–51. https://doi.org/10.1007/s00259-022-05769-x.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rojoa D, Kontopodis N, Antoniou SA, Ioannou CV, Antoniou GA. 18F-FDG PET in the diagnosis of vascular prosthetic graft infection: a diagnostic test accuracy meta-analysis. Eur J Vasc Endovasc Sur: Off J Eur Soc Vasc Surg. 2019;57(2):292–301. https://doi.org/10.1016/j.ejvs.2018.08.040.

    Article  Google Scholar 

  36. Reinders Folmer EI, Von Meijenfeldt GCI, Van der Laan MJ, Glaudemans A, Slart R, Saleem BR, et al. Diagnostic imaging in vascular graft infection: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg: Off J Eur Soc Vasc Surg. 2018;56(5):719–29. https://doi.org/10.1016/j.ejvs.2018.07.010.

    Article  Google Scholar 

  37. Sunde SK, Beske T, Gerke O, Clausen LL, Hess S. FDG-PET/CT as a diagnostic tool in vascular graft infection: a systematic review and meta-analysis. Clin Trans Imaging. 2019;7(4):255–65. https://doi.org/10.1007/s40336-019-00336-1.

    Article  Google Scholar 

  38. Kim SJ, Lee SW, Jeong SY, Pak K, Kim K. A systematic review and meta-analysis of (18)F-fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography for detection of infected prosthetic vascular grafts. J Vasc Surg. 2019;70(1):307–13. https://doi.org/10.1016/j.jvs.2019.01.051.

    Article  PubMed  Google Scholar 

  39. ReindersFolmer EI, von Meijenfeldt GCI, Te Riet OokGenaamdScholten RS, van der Laan MJ, Glaudemans A, Slart R, et al. A systematic review and meta-analysis of (18)F-fluoro-d-deoxyglucose positron emission tomography interpretation methods in vascular graft and endograft infection. J Vasc Surg. 2022;72(6):2174–85. https://doi.org/10.1016/j.jvs.2020.05.065.

    Article  Google Scholar 

  40. Mahmoodi Z, Salarzaei M, Sheikh M. Prosthetic vascular graft infection: a systematic review and meta-analysis on diagnostic accuracy of 18FDG PET/CT. Gen Thorac Cardiovasc Surg. 2022;70(3):219–29. https://doi.org/10.1007/s11748-021-01682-6.

    Article  PubMed  Google Scholar 

  41. •• Husmann L, Ledergerber B, Anagnostopoulos A, Stolzmann P, Sah BR, Burger IA, et al. The role of FDG PET/CT in therapy control of aortic graft infection. Eur J Nucl Med Mol Imaging. 2018;45(11):1987–97. https://doi.org/10.1007/s00259-018-4069-1. This prospective clinical study described the value of FDG PET/CT in therapy control of aortic graft infection.

    Article  PubMed  Google Scholar 

  42. Premkumar A, Kolin DA, Farley KX, Wilson JM, McLawhorn AS, Cross MB, et al. Projected economic burden of periprosthetic joint infection of the hip and knee in the United States. J Arthroplasty. 2021;36(5):1484-9.e3. https://doi.org/10.1016/j.arth.2020.12.005.

    Article  PubMed  Google Scholar 

  43. Signore A, Sconfienza LM, Borens O, Glaudemans A, Cassar-Pullicino V, Trampuz A, et al. Consensus document for the diagnosis of prosthetic joint infections: a joint paper by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur J Nucl Med Mol Imaging. 2019;46(4):971–88. https://doi.org/10.1007/s00259-019-4263-9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Glaudemans AW, Prandini N, Girolamo MD, Argento G, Lauri C, Lazzeri E, et al. Hybrid imaging of musculoskeletal infections. Quart J Nucl Med Mol Imag: off Publ Ital Assoc Nucl Med (AIMN) Int Assoc Radiopharmacol (IAR) Sect So. 2018;62(1):3–13. https://doi.org/10.23736/s1824-4785.17.03045-x.

    Article  Google Scholar 

  45. Sconfienza LM, Signore A, Cassar-Pullicino V, Cataldo MA, Gheysens O, Borens O, et al. Diagnosis of peripheral bone and prosthetic joint infections: overview on the consensus documents by the EANM, EBJIS, and ESR (with ESCMID endorsement). Eur Radiol. 2019;29(12):6425–38. https://doi.org/10.1007/s00330-019-06326-1.

    Article  PubMed  Google Scholar 

  46. Romanò CL, Petrosillo N, Argento G, Sconfienza LM, Treglia G, Alavi A et al. The role of imaging techniques to define a peri-prosthetic hip and knee joint infection: multidisciplinary consensus statements. J Clin Med 2020;9(8). https://doi.org/10.3390/jcm9082548.

  47. Sollini M, Lauri C, Boni R, Lazzeri E, Erba PA, Signore A. Current status of molecular imaging in infections. Curr Pharm Des. 2018;24(7):754–71. https://doi.org/10.2174/1381612824666180110103348.

    Article  CAS  PubMed  Google Scholar 

  48. Loharkar S, Basu S. PET-computed tomography in bone and joint infections. PET Clin. 2023;18(1):49–69. https://doi.org/10.1016/j.cpet.2022.08.002.

    Article  PubMed  Google Scholar 

  49. Falstie-Jensen T, Daugaard H, Søballe K, Ovesen J, Arveschoug AK, Lange J. Labeled white blood cell/bone marrow single-photon emission computed tomography with computed tomography fails in diagnosing chronic periprosthetic shoulder joint infection. J Shoulder Elbow Surg. 2019;28(6):1040–8. https://doi.org/10.1016/j.jse.2018.10.024.

    Article  Google Scholar 

  50. Falstie-Jensen T, Lange J, Daugaard H, Vendelbo MH, Sørensen AK, Zerahn B, et al. 18F FDG-PET/CT has poor diagnostic accuracy in diagnosing shoulder PJI. Eur J Nucl Med Mol Imaging. 2019;46(10):2013–22. https://doi.org/10.1007/s00259-019-04381-w.

    Article  PubMed  Google Scholar 

  51. Signore A. The need of shared diagnostic protocols. Quart J Nucl Med Mol Imag Off Publ Ital Assoc Nucl Med (AIMN) Int Assoc Radiopharmacol (IAR) Sect So. 2014;58(1):1.

    CAS  Google Scholar 

  52. Singh SB, Bhandari S, Siwakoti S, Bhatta R, Raynor WY, Werner TJ et al. Is imaging bacteria with PET a realistic option or an illusion? Diagnostics (Basel, Switzerland). 2023;13(7). https://doi.org/10.3390/diagnostics13071231.

  53. Signore A, Artiko V, Conserva M, Ferro-Flores G, Welling MM, Jain SK et al. Imaging bacteria with radiolabelled probes: is it feasible? J Clin Med. 2020;9(8). https://doi.org/10.3390/jcm9082372.

  54. Hess S, Alavi A, Werner T, Høilund-Carlsen PF. Molecular imaging of bacteria in patients is an attractive Fata Morgana, not a realistic option. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2018;59(4):716–7. https://doi.org/10.2967/jnumed.117.207001.

    Article  CAS  PubMed  Google Scholar 

  55. Marjanovic-Painter B, Kleynhans J, Zeevaart JR, Rohwer E, Ebenhan T. A decade of ubiquicidin development for PET imaging of infection: a systematic review. Nucl Med Biol. 2023;116–117:108307. https://doi.org/10.1016/j.nucmedbio.2022.11.001.

    Article  CAS  PubMed  Google Scholar 

  56. Auletta S, Galli F, Lauri C, Martinelli D, Santino I, Signore A. Imaging bacteria with radiolabelled quinolones, cephalosporins and siderophores for imaging infection: a systematic review. Clin Transl Imaging. 2016;4:229–52. https://doi.org/10.1007/s40336-016-0185-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Auletta S, Varani M, Horvat R, Galli F, Signore A, Hess S. PET radiopharmaceuticals for specific bacteria imaging: a systematic review. Journal of clinical medicine. 2019;8(2). https://doi.org/10.3390/jcm8020197. A comprehensive overview of potential novel bacteria-specific PET-tracers based in a systematic review of the literature.

  58. Rousset O, Rahmim A, Alavi A, Zaidi H. Partial volume correction strategies in PET. PET Clin. 2007;2(2):235–49. https://doi.org/10.1016/j.cpet.2007.10.005.

    Article  PubMed  Google Scholar 

  59. Alavi A, Werner TJ, Høilund-Carlsen PF. What can be and what cannot be accomplished with PET to detect and characterize atherosclerotic plaques. J Nucl Cardiol: Off Publ Am Soc Nucl Cardiol. 2018;25(6):2012–5. https://doi.org/10.1007/s12350-017-0977-x.

    Article  Google Scholar 

  60. Slart R, Tsoumpas C, Glaudemans A, Noordzij W, Willemsen ATM, Borra RJH, et al. Long axial field of view PET scanners: a road map to implementation and new possibilities. Eur J Nucl Med Mol Imaging. 2021;48(13):4236–45. https://doi.org/10.1007/s00259-021-05461-6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Sluis J, Borra R, Tsoumpas C, van Snick JH, Roya M, Ten Hove D, et al. Extending the clinical capabilities of short- and long-lived positron-emitting radionuclides through high sensitivity PET/CT. Cancer Imag: Off Publ Int Cancer Imag Soc. 2022;22(1):69. https://doi.org/10.1186/s40644-022-00507-w.

    Article  Google Scholar 

  62. Glaudemans A, Gheysens O. Expert opinions in nuclear medicine: finding the “holy grail” in infection imaging. Front Med (Lausanne). 2023;10:1149925. https://doi.org/10.3389/fmed.2023.1149925.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to conceptualizing this work and contributed individual sections of the main text. K.R. prepared figures 1 & 2. All authors reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to Søren Hess MD.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorsen, M.E., Singh, S.B., Rewers, K. et al. Molecular Imaging Techniques in the Diagnosis and Monitoring of Infectious Diseases. Curr Treat Options Infect Dis (2024). https://doi.org/10.1007/s40506-024-00274-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40506-024-00274-1

Keywords

Navigation