Skip to main content

Advertisement

Log in

Challenges in the Hospital Water System and Innovations to Prevent Healthcare-Associated Infections

  • New Technologies and Advances in Infections Prevention (A Marra, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Healthcare-associated infections (HAI) related to hospital water distribution systems have been well-described. More recently, outbreaks linked to the wastewater system as well as water-containing medical devices have increased awareness of potential environmental sources of water-related HAI. In this review, we summarize outbreaks and challenges associated with hospital water distribution and wastewater systems, as well as potential mitigation strategies. The heightened attention on water-related HAI has sparked new strategies and innovations to mitigate these risks, including engineered or structural modifications to plumbing components, enhanced disinfection of premise plumbing, and novel tools to reduce biofilm formation. Bundled approaches are often used. Focus should remain on basic infection prevention strategies and physical separation of clean items from surfaces potentially contaminated by water sources. Hospital premise plumbing is a reservoir of opportunistic pathogens, which presents unique challenges for infection prevention. Although numerous mitigation strategies have been described in the literature, basic infection prevention practices remain key. Additional investigation is needed to find effective and sustainable techniques to reduce the risk of water-related HAI and improve patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Perspect Environmental Health Perspectives. 2015;123:749–58.

    Article  CAS  PubMed  Google Scholar 

  2. Kanamori H, Weber DJ, Rutala WA. Healthcare outbreaks associated with a water reservoir and infection prevention strategies Weinstein RA, editor. Clin Infect Dis. 2016;62:1423–35.

    Article  PubMed  Google Scholar 

  3. Ferranti G, Marchesi I, Favale M, Borella P, Bargellini A. Aetiology, source and prevention of waterborne healthcare-associated infections: a review. J Med Microbiol. 2014;63:1247–59.

    Article  PubMed  Google Scholar 

  4. Rutala WA, Weber DJ 1997 Water as a reservoir of nosocomial pathogens. Infect Control Hosp Epidemiol. [Cambridge University Press, Society for Healthcare Epidemiology of America]; 1997;18:609–16.

  5. Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H. Water stagnation and flow obstruction reduces the quality of potable water and increases the risk of Legionelloses. Front Environ Sci. 2020;8:1–13.

    Article  Google Scholar 

  6. Patterson WJ, Seal DV, Curran E, Sinclair TM, McLuckie JC. Fatal nosocomial Legionnaires’ disease: relevance of contamination of hospital water supply by temperature-dependent buoyancy-driven flow from spur pipes. Epidemiol Infect. 1994;112:513–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tercelj-Zorman M, Seljak M, Stare J, Mencinger J, Rakovec J, Rylander R, et al. A hospital outbreak of Legionella from a contaminated water supply. Arch Environ Health. 2004;59:156–9.

    Article  PubMed  Google Scholar 

  8. Baker AW, Lewis SS, Alexander BD, Chen LF, Wallace RJ, Brown-Elliott BA, et al. Two-phase hospital-associated outbreak of Mycobacterium abscessus: investigation and mitigation. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;64:902–11.

    Google Scholar 

  9. Weber DJ, Rutala WA, Blanchet CN, Jordan M, Gergen MF. Faucet aerators: a source of patient colonization with Stenotrophomonas maltophilia. Am J Infect Control. 1999;27:59–63.

    Article  CAS  PubMed  Google Scholar 

  10. Lv Y, Xiang Q, Jin YZ, Fang Y, Wu YJ, Zeng B, et al. Faucet aerators as a reservoir for Carbapenem-resistant Acinetobacter baumannii: a healthcare-associated infection outbreak in a neurosurgical intensive care unit. Antimicrob Resist Infect Control. 2019;8:205.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kappstein I, Grundmann H, Hauer T, Niemeyer C. Aerators as a reservoir of Acinetobacter junii: an outbreak of bacteraemia in paediatric oncology patients. J Hosp Infect. 2000;44:27–30.

    Article  CAS  PubMed  Google Scholar 

  12. Palmore TN, Stock F, White M, Bordner M, Michelin A, Bennett JE, et al. A cluster of nosocomial Legionnaire’s disease linked to a contaminated hospital decorative water fountain. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2009;30:764–8.

    Article  Google Scholar 

  13. Haupt TE, Heffernan RT, Kazmierczak JJ, Nehls-Lowe H, Rheineck B, Powell C, et al. An outbreak of Legionnaires disease associated with a decorative water wall fountain in a hospital. Infect Control Hosp Epidemiol. 2012;33:185–91.

    Article  PubMed  Google Scholar 

  14. Controlling Legionella in decorative fountains | CDC [Internet]. 2022 [cited 2022 Sep 23]. Available from: https://www.cdc.gov/legionella/wmp/control-toolkit/decorative-fountains.html

  15. Schuetz AN, Hughes RL, Howard RM, Williams TC, Nolte FS, Jackson D, et al. Pseudo-outbreak of Legionella pneumophila serogroup 8 infection associated with a contaminated ice machine in a bronchoscopy suite. Infect Control Hosp Epidemiol. 2009;30:461–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bangsborg JM, Uldum S, Jensen JS, Bruun BG. Nosocomial legionellosis in three heart-lung transplant patients: case reports and environmental observations. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 1995;14:99–104.

    Article  CAS  Google Scholar 

  17. Gebo KA, Srinivasan A, Perl TM, Ross T, Groth A, Merz WG. Pseudo-outbreak of Mycobacterium fortuitum on a human immunodeficiency virus ward: transient respiratory tract colonization from a contaminated ice machine. Clin Infect Dis Off Publ Infect Dis Soc Am. 2002;35:32–8.

    Article  Google Scholar 

  18. Rodriguez JM, Xie YL, Winthrop KL, Schafer S, Sehdev P, Solomon J, et al. Mycobacterium chelonae facial infections following injection of dermal filler. Aesthet Surg J. 2013;33:265–9.

    Article  PubMed  Google Scholar 

  19. Hoffmann KK, Weber DJ, Gergen MF, Rutala WA, Tate G. Pseudomonas aeruginosa-related postoperative endophthalmitis linked to a contaminated phacoemulsifier. Arch Ophthalmol Chic Ill. 1960;2002(120):90–3.

    Google Scholar 

  20. van Ingen J, Kohl TA, Kranzer K, Hasse B, Keller PM, Katarzyna Szafrańska A, et al. Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis. 2017;17:1033–41.

    Article  PubMed  Google Scholar 

  21. Rhee C, Baker MA, Tucker R, Vaidya V, Holtzman M, Seethala RR, et al. Cluster of Burkholderia cepacia complex infections associated with extracorporeal membrane oxygenation water heater devices. Clin Infect Dis Off Publ Infect Dis Soc Am. 2022;ciac200.

  22. Lowe C, Willey B, O’Shaughnessy A, Lee W, Lum M, Pike K, et al. Outbreak of extended-spectrum β-lactamase-producing Klebsiella oxytoca infections associated with contaminated handwashing sinks(1). Emerg Infect Dis. 2012;18:1242–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lalancette C, Charron D, Laferrière C, Dolcé P, Déziel E, Prévost M, et al. Hospital drains as reservoirs of Pseudomonas aeruginosa: multiple-locus variable-number of tandem repeats analysis genotypes recovered from faucets, sink surfaces and patients. Pathog Basel Switz. 2017;6:E36.

    Article  Google Scholar 

  24. Leitner E, Zarfel G, Luxner J, Herzog K, Pekard-Amenitsch S, Hoenigl M, et al. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob Agents Chemother. 2015;59:714–6.

    Article  PubMed  Google Scholar 

  25. De Geyter D, Blommaert L, Verbraeken N, Sevenois M, Huyghens L, Martini H, et al. The sink as a potential source of transmission of carbapenemase-producing Enterobacteriaceae in the intensive care unit. Antimicrob Resist Infect Control. 2017;6:24.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Park SC, Parikh H, Vegesana K, Stoesser N, Barry KE, Kotay SM, et al. Risk factors associated with carbapenemase-producing Enterobacterales (CPE) positivity in the hospital wastewater environment. Appl Environ Microbiol. 2020;86:e01715-e1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burgos-Garay M, Ganim C, de Man TJB, Davy T, Mathers AJ, Kotay S, et al. Colonization of carbapenem-resistant Klebsiella pneumoniae in a sink-drain model biofilm system. Infect Control Hosp Epidemiol. 2021;42:722–30.

    Article  PubMed  Google Scholar 

  28. Kotay SM, Parikh HI, Barry K, Gweon HS, Guilford W, Carroll J, et al. Nutrients influence the dynamics of Klebsiella pneumoniae carbapenemase producing enterobacterales in transplanted hospital sinks. Water Res. 2020;176:115707.

    Article  CAS  PubMed  Google Scholar 

  29. •• Kotay SM, Donlan RM, Ganim C, Barry K, Christensen BE, Mathers AJ. Droplet- rather than aerosol-mediated dispersion is the primary mechanism of bacterial transmission from contaminated hand-washing sink traps. Appl Environ Microbiol. 2019;85:e01997-18. This study describes the mechanism of environmental contamination with bacteria that colonize hand-washing sinks, including biofilm formation in the P-trap, followed by contamination of the strainer, and then droplet dispersal from water flow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Aranega-Bou P, George RP, Verlander NQ, Paton S, Bennett A, Moore G, et al. Carbapenem-resistant Enterobacteriaceae dispersal from sinks is linked to drain position and drainage rates in a laboratory model system. J Hosp Infect. 2019;102:63–9. This analysis shows the potential distance of bacterial dispersal from sink splatter and the efficacy of modifications in sink design to reduce dispersal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salm F, Deja M, Gastmeier P, Kola A, Hansen S, Behnke M, et al. Prolonged outbreak of clonal MDR Pseudomonas aeruginosa on an intensive care unit: contaminated sinks and contamination of ultra-filtrate bags as possible route of transmission? Antimicrob Resist Infect Control. 2016;5:53.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hota S, Hirji Z, Stockton K, Lemieux C, Dedier H, Wolfaardt G, et al. Outbreak of multidrug-resistant Pseudomonas aeruginosa colonization and infection secondary to imperfect intensive care unit room design. Infect Control Hosp Epidemiol. 2009;30:25–33.

    Article  PubMed  Google Scholar 

  33. Totaro M, Valentini P, Costa AL, Giorgi S, Casini B, Baggiani A. Rate of Legionella pneumophila colonization in hospital hot water network after time flow taps installation. J Hosp Infect. 2018;98:60–3.

    Article  CAS  PubMed  Google Scholar 

  34. Whiley H, Hinds J, Xi J, Bentham R. Real-time continuous surveillance of temperature and flow events presents a novel monitoring approach for hospital and healthcare water distribution systems. Int J Environ Res Public Health. 2019;16:E1332.

    Article  Google Scholar 

  35. Benoit M-È, Prévost M, Succar A, Charron D, Déziel E, Robert E, et al. Faucet aerator design influences aerosol size distribution and microbial contamination level. Sci Total Environ. 2021;775:145690.

    Article  CAS  PubMed  Google Scholar 

  36. Trautmann M, Halder S, Hoegel J, Royer H, Haller M. Point-of-use water filtration reduces endemic Pseudomonas aeruginosa infections on a surgical intensive care unit. Am J Infect Control. 2008;36:421–9.

    Article  PubMed  Google Scholar 

  37. • Parkinson J, Baron JL, Hall B, Bos H, Racine P, Wagener MM, et al. Point-of-use filters for prevention of health care-acquired Legionnaires’ disease: field evaluation of a new filter product and literature review. Am J Infect Control. 2020;48:132–8. This field evaluation demonstrates the efficacy of point-of-use (POU) filters in reducing opportunistic premise plumbing pathogens from tap water and includes a review of commercially available POU filters.

    Article  PubMed  Google Scholar 

  38. Bicking Kinsey C, Koirala S, Solomon B, Rosenberg J, Robinson BF, Neri A, et al. Pseudomonas aeruginosa outbreak in a neonatal intensive care unit attributed to hospital tap water. Infect Control Hosp Epidemiol. 2017;38:801–8.

    Article  PubMed  Google Scholar 

  39. Zhou ZY, Hu BJ, Qin L, Lin YE, Watanabe H, Zhou Q, et al. Removal of waterborne pathogens from liver transplant unit water taps in prevention of healthcare-associated infections: a proposal for a cost-effective, proactive infection control strategy. Clin Microbiol Infect. 2014;20:310–4.

    Article  CAS  PubMed  Google Scholar 

  40. Williams MM, Chen T-H, Keane T, Toney N, Toney S, Armbruster CR, et al. Point-of-use membrane filtration and hyperchlorination to prevent patient exposure to rapidly growing mycobacteria in the potable water supply of a skilled nursing facility. Infect Control Hosp Epidemiol. Cambridge University Press; 2011;32:837–44.

  41. Florentin A, Lizon J, Asensio E, Forin J, Rivier A. Water and surface microbiologic quality of point-of-use water filters: a comparative study. Am J Infect Control. 2016;44:1061–2.

    Article  PubMed  Google Scholar 

  42. Gestrich SA, Jencson AL, Cadnum JL, Livingston SH, Wilson BM, Donskey CJ. A multicenter investigation to characterize the risk for pathogen transmission from healthcare facility sinks. Infect Control Hosp Epidemiol. 2018;39:1467–9.

    Article  PubMed  Google Scholar 

  43. Livingston SH, Cadnum JL, Gestrich S, Jencson AL, Donskey CJ. A novel sink drain cover prevents dispersal of microorganisms from contaminated sink drains. Infect Control Hosp Epidemiol. 2018;39:1254–6.

    Article  PubMed  Google Scholar 

  44. Mathers AJ, Vegesana K, German Mesner I, Barry KE, Pannone A, Baumann J, et al. Intensive care unit wastewater interventions to prevent transmission of multispecies Klebsiella pneumoniae carbapenemase-producing organisms. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018;67:171–8.

    Article  Google Scholar 

  45. Kizny Gordon AE, Mathers AJ, Cheong EYL, Gottlieb T, Kotay S, Walker AS, et al. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-a systematic review of the literature. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;64:1435–44.

    Article  Google Scholar 

  46. Cadnum JL, Livingston SH, Gestrich SA, Jencson AL, Wilson BM, Donskey CJ. Use of a stop valve to enhance disinfectant exposure may improve sink drain disinfection. Infect Control Hosp Epidemiol. Cambridge University Press; 2019;40:254–6.

  47. Livingston S, Cadnum JL, Gestrich S, Jencson AL, Donskey CJ. Efficacy of automated disinfection with ozonated water in reducing sink drainage system colonization with Pseudomonas species and Candida auris. Infect Control Hosp Epidemiol. Cambridge University Press; 2018;39:1497–8.

  48. Fusch C, Pogorzelski D, Main C, Meyer C-L, El Helou S, Mertz D. Self-disinfecting sink drains reduce the Pseudomonas aeruginosa bioburden in a neonatal intensive care unit. Acta Paediatr Oslo Nor. 1992;2015(104):e344-349.

    Google Scholar 

  49. • de Jonge E, de Boer MGJ, van Essen EHR, Dogterom-Ballering HCM, Veldkamp KE. Effects of a disinfection device on colonization of sink drains and patients during a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. J Hosp Infect. 2019;102:70–4. In this study, the use of a device that applies heat and vibration to the sink drain resulted in a significant reduction in sink colonization with multidrug-resistant Pseudomonas.

    Article  PubMed  Google Scholar 

  50. Starlander G, Melhus Å. Minor outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in an intensive care unit due to a contaminated sink. J Hosp Infect. 2012;82:122–4.

    Article  CAS  PubMed  Google Scholar 

  51. Seara N, Oteo J, Carrillo R, Pérez-Blanco V, Mingorance J, Gómez-Gil R, et al. Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int J Antimicrob Agents. 2015;46:169–73.

    Article  CAS  PubMed  Google Scholar 

  52. Vergara-López S, Domínguez MC, Conejo MC, Pascual Á, Rodríguez-Baño J. Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-β-lactamase-producing Klebsiella oxytoca. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2013;19:E490-498.

    Google Scholar 

  53. Decraene V, Phan HTT, George R, Wyllie DH, Akinremi O, Aiken Z, et al. A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob Agents Chemother. 2018;62:e01689-e1718.

    Article  PubMed  PubMed Central  Google Scholar 

  54. •• Gbaguidi-Haore H, Varin A, Cholley P, Thouverez M, Hocquet D, Bertrand X. A Bundle of measures to control an outbreak of Pseudomonas aeruginosa associated with P-trap contamination. Infect Control Hosp Epidemiol. Cambridge University Press; 2018;39:164–9. This study demonstrates re-colonization of new plumbing fixtures over time and need for bundled approaches to control outbreaks of water-related HAI.

  55. Baker AW, Stout JE, Anderson DJ, Sexton DJ, Smith B, Moehring RW, et al. Tap water avoidance decreases rates of hospital-onset pulmonary nontuberculous Mycobacteria. Clin Infect Dis Off Publ Infect Dis Soc Am. 2021;73:524–7.

    Article  Google Scholar 

  56. Catho G, Martischang R, Boroli F, Chraïti MN, Martin Y, Koyluk Tomsuk Z, et al. Outbreak of Pseudomonas aeruginosa producing VIM carbapenemase in an intensive care unit and its termination by implementation of waterless patient care. Crit Care Lond Engl. 2021;25:301.

    Article  Google Scholar 

  57. Hopman J, Bos R, Voss A, Kolwijck E, Sturm P, Pickkers P, et al. Reduced rate of MDROs after introducing ‘water-free patient care’ on a large intensive care unit in the Netherlands. Antimicrob Resist Infect Control. 2015;4:O40.

    Article  PubMed Central  Google Scholar 

  58. Kossow A, Kampmeier S, Willems S, Berdel WE, Groll AH, Burkhardt B, et al. Control of multidrug-resistant Pseudomonas aeruginosa in allogeneic hematopoietic stem cell transplant recipients by a novel bundle including remodeling of sanitary and water supply systems. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;65:935–42.

    Article  Google Scholar 

  59. Breathnach AS, Cubbon MD, Karunaharan RN, Pope CF, Planche TD. Multidrug-resistant Pseudomonas aeruginosa outbreaks in two hospitals: association with contaminated hospital waste-water systems. J Hosp Infect. 2012;82:19–24.

    Article  CAS  PubMed  Google Scholar 

  60. Magin V, Garrec N, Andrés Y. Selection of bacteriophages to control in vitro 24 h old biofilm of Pseudomonas aeruginosa isolated from drinking and thermal water. Viruses. 2019;11:E749.

    Article  Google Scholar 

  61. Ho Y-H, Tseng C-C, Wang L-S, Chen Y-T, Ho G-J, Lin T-Y, et al. Application of Bacteriophage-containing aerosol against nosocomial transmission of carbapenem-resistant Acinetobacter baumannii in an intensive care unit Becker K, editor. PLOS ONE. 2016;11:e0168380.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Santiago AJ, Burgos-Garay ML, Kartforosh L, Mazher M, Donlan RM. Bacteriophage treatment of carbapenemase-producing Klebsiella pneumoniae in a multispecies biofilm: a potential biocontrol strategy for healthcare facilities. AIMS Microbiol. 2020;6:43–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meaden S, Koskella B. Exploring the risks of phage application in the environment. Front Microbiol. 2013;4:358.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kauppinen J, Nousiainen T, Jantunen E, Mattila R, Katila ML. Hospital water supply as a source of disseminated Mycobacterium fortuitum infection in a leukemia patient. Infect Control Hosp Epidemiol. 1999;20:343–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Gettler MD.

Ethics declarations

Human and Animal Rights and Informed Consent.

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gettler, E., Smith, B.A. & Lewis, S.S. Challenges in the Hospital Water System and Innovations to Prevent Healthcare-Associated Infections. Curr Treat Options Infect Dis 15, 1–13 (2023). https://doi.org/10.1007/s40506-023-00261-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-023-00261-y

Keywords

Navigation