Skip to main content
Log in

Decontamination of the Hospital Environment: New Technologies for Infection Control

  • New Technologies and Advances in Infection Prevention (A Marra, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Environmental contamination is being increasingly recognised as a significant source of healthcare-associated infection (HAI). Cross-contamination of the patient from the environment can result from the direct transfer of organisms from the air and surfaces or indirectly from the hospital environment via contact with healthcare workers or equipment. Traditional methods of environmental decontamination, including cleaning with disinfectants, and the standard infection control procedures implemented by modern health services are critical to controlling the spread of potentially pathogenic microbial contaminants from environmental sources to the patient; however, there is constant pressure to maintain and indeed improve on the standards that are in place to ensure optimal patient care. To address this issue, much research has been directed towards the development and testing of novel ‘whole-room’ environmental decontamination methods which could be used to enhance hospital hygiene and consequently reduce the risk of HAI acquisition from environmental sources. Gaseous methods such as the use of hydrogen peroxide, chlorine dioxide, ozone and steam, as well as ultraviolet and violet-blue visible light methods have all been laboratory tested, and to varying extents, clinically evaluated to assess their efficacy for environmental decontamination. This review article considers these different decontamination technologies, discussing their mechanism of action, antimicrobial efficacy and advantages and limitations, with a view to providing the reader with a comprehensive overview of the technological advances being developed to reduce the levels of environmental contamination around patient areas, thus aiding in the fight against healthcare-associated infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beggs C. The airborne transmission of infection in hospital buildings: fact or fiction? Indoor Built Environ. 2003;12:9–18.

    Article  Google Scholar 

  2. Bhalla A, Pultz NJ, Gries DM, Ray AJ, Eckstein EC, Aron DC, et al. Acquisition of nosocomial pathogens on hands after contact with environmental surfaces near hospitalized patients. Infect Control Hosp Epidemiol. 2004;25(2):164–6.

    Article  PubMed  Google Scholar 

  3. Boyce JM. Environmental contamination makes an important contribution to hospital infection. J Hosp Infect. 2007;65(S2):50–4.

    Article  PubMed  Google Scholar 

  4. Denton M, Wilcox MH, Parnell P, Green D, Keer V, Hawkey PM, et al. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. Int Crit Care Nurse. 2005;21:94–8.

    Article  CAS  Google Scholar 

  5. Pimentel JD, Low J, Styles K, Harris OC, Hughes A, Athan E. Control of an outbreak of multi-drug resistant Acinetobacter baumannii in an intensive care unit and surgical ward. J Hosp Infect. 2005;59:249–53.

    Article  CAS  PubMed  Google Scholar 

  6. Boyce JM, Potter-Bynoe G, Chenevert C, King T. Environmental contamination due to methicillin-resistant Staphylococcus aureus: possible infection control implications. Infect Control Hosp Epidemiol. 1997;18(9):622–7.

    Article  CAS  PubMed  Google Scholar 

  7. Duckro AN, Blom DW, Lyle EA, Weinstein RA, Hayden MK. Transfer of vancomycin-resistant enterococci via health care worker hands. Arch Intern Med. 2005;165:302–7.

    Article  PubMed  Google Scholar 

  8. Hayden MK, Blom DW, Lyle EA, Moore CG, Weinstein RA. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant Enterococcus or the colonized patient’s environment. Infect Control Hosp Epidemiol. 2008;29(2):149–54.

    Article  PubMed  Google Scholar 

  9. Dancer SJ. The role of environmental cleaning in the control of hospital-acquired infection. J Hosp Infect. 2009;68:39–44.

    Google Scholar 

  10. Goodman ER, Platt R, Bass R, Onderdonk B, Yokoe DS, Huang SS. Impact of an environmental cleaning intervention on the presence of methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci on surfaces in intensive care unit rooms. Infect Control Hosp Epidemiol. 2008;29(7):593–9.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Carling PC, Von Beheren S, Kim P, Woods C. Intensive care unit environmental cleaning: an evaluation in sixteen hospitals using a novel assessment tool. J Hosp Infect. 2008;68:39–44.

    Article  CAS  PubMed  Google Scholar 

  12. Dancer SJ. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin Microbiol Rev. 2014;27(4):665–90. This paper presents a comprehensive review of the role of the environment in HAI, key organisms involved in HAI, and an overview of the role of cleaning and new technologies in infection control.

    Article  CAS  PubMed  Google Scholar 

  13. Rutala WA, Weber DJ. Disinfection and sterilization: an overview. Am J Infect Control. 2013;41:S2–5.

    Article  PubMed  Google Scholar 

  14. Schneider PM. New technologies and trends in sterilization and disinfection. Am J Infect Control. 2013;41:S81–6.

    Article  PubMed  Google Scholar 

  15. Barbut F, Menuet D, Verachten M, Girou E. Comparison of the efficacy of a hydrogen peroxide dry‐mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol. 2009;30(6):507–14.

    Article  CAS  PubMed  Google Scholar 

  16. Boyce JM. New approaches to decontamination of rooms after patients are discharged. Infect Control Hosp Epidemiol. 2009;30(6):515–7.

    Article  PubMed  Google Scholar 

  17. Chan HT, White P, Sheorey H, Cocks J, Waters MJ. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital. J Hosp Infect. 2011;79(2):125–8.

    Article  PubMed  Google Scholar 

  18. Otter JA, French GL. Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J Clin Microbiol. 2009;47(1):205–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Goyal SM, Chander Y, Yezli S, Otter JA. Evaluating the virucidal efficacy of hydrogen peroxide vapour. J Hosp Infect. 2014;86(4):255–9.

    Article  CAS  PubMed  Google Scholar 

  20. Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother. 2012;67(7):1589–96.

    Article  CAS  PubMed  Google Scholar 

  21. Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of ‘no-touch’ automated room disinfection systems in infection prevention and control. J Hosp Infect. 2013;83(1):1–13. This review provides an informative overview of current decontamination technologies such as vaporized and aerosolized hydrogen peroxide, and UV-light and highlights considerations for implementation of these technologies for terminal decontamination.

    Article  CAS  PubMed  Google Scholar 

  22. Herruzo R, Vizcaíno MJ, Herruzo I. Quantifying Glosair™ 400 efficacy for surface disinfection of American type culture collection strains and micro-organisms recently isolated from intensive care unit patients. J Hosp Infect. 2014;87(3):175–8.

    Article  CAS  PubMed  Google Scholar 

  23. Fu TY, Gent P, Kumar V. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect. 2012;80(3):199–205. This paper demonstrates the greater efficacy of HPV compared to aHP, and demonstrates the safety requirements for rooms to be sealed during use of aHP, which was previously not thought necessary.

    Article  CAS  PubMed  Google Scholar 

  24. Otter JA, Yezli S. A call for clarity when discussing hydrogen peroxide vapour and aerosol systems. J Hosp Infect. 2011;77(1):83–4.

    Article  CAS  PubMed  Google Scholar 

  25. Boyce JM, Havill NL, Otter JA, McDonald LC, Adams NM, Cooper T, et al. Impact of hydrogen peroxide vapour room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemol. 2008;29(8):723–9.

    Article  Google Scholar 

  26. Passaretti CL, Otter JA, Reich NG, Myers J, Shepard J, Ross T, et al. An evaluation of environmental decontamination with hydrogen peroxide vapour for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis. 2013;56:27–35.

    Article  CAS  PubMed  Google Scholar 

  27. Chmielarczyk A, Higgins PG, Wojkowska-Mach J, Synowiec E, Zander E, Romaniszyn D, et al. Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J Hosp Infect. 2012;81(4):239–45.

    Article  CAS  PubMed  Google Scholar 

  28. Pottage T, Macken S, Walker JT, Bennett AM. Meticillin-resistant Staphylococcus aureus is more resistant to vaporized hydrogen peroxide than commercial Geobacillus stearothermophilus biological indicators. J Hosp Infect. 2012;80(1):41–5. The results of this study indicate that biological indicators may be more susceptible to hydrogen peroxide decontamination than other bacteria found in the healthcare environment suggesting that the assumed microbial efficacy of hydrogen peroxide may not be transferred to other organisms.

    Article  CAS  PubMed  Google Scholar 

  29. Otter JA, Puchowicz M, Ryan D, Salkeld JA, Cooper TA, Havill NL, et al. Feasibility of routinely using hydrogen peroxide vapor to decontaminate rooms in a busy United States hospital. Infect Control Hosp Epidemiol. 2009;30(6):574–7.

    Article  PubMed  Google Scholar 

  30. Hardy KJ, Gossain S, Henderson N, Drugan C, Oppenheim BA, Gao F, et al. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect. 2007;66(4):360–8.

    Article  CAS  PubMed  Google Scholar 

  31. United States Environmental Protection Agency (EPA): Anthrax spore decontamination using chlorine dioxide. http://www.epa.gov/pesticides/factsheets/chemicals/chlorinedioxidefactsheet.htm, accessed 16 Dec 2014.

  32. Davies A, Pottage T, Bennett A, et al. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment. J Hosp Infect. 2011;77:199–203.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson SC, Wu C, Andriychuk LA, et al. Effect of chlorine dioxide gas on fungi and mycotoxins associated with sick building syndrome. Appl Environ Microbiol. 2005;71:5399–403.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Li Y, Zhu N, Jia H, Wu J, Yi Y, Qi J. Decontamination of Bacillus subtilis var. Niger spores on selected surfaces by chlorine dioxide gas. J Zhejiang Univ Sci B. 2012;13(4):254–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lowe JJ, Gibbs SG, Iwen PC, et al. Impact of chlorine dioxide gas sterilisation on nosocomial organism viability in a hospital room. Int J Environ Res Pub Health. 2013;10:2596–605.

    Article  CAS  Google Scholar 

  36. Moat J, Cargill J, Sone J, et al. Application of a novel decontamination process using gaseous ozone. Can J Microbiol. 2009;55:928–33.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma M, Hudson JB. Ozone gas is an effective and practical antibacterial agent. Am J Infect Control. 2008;36:559–63.

    Article  PubMed  Google Scholar 

  38. Doan L, Forrest H, Fakis A, et al. Clinical and cost effectiveness of eight disinfection methods for terminal disinfection of hospital isolation rooms contaminated with Clostridium difficile 027. J Hosp Infect. 2012;82:114–21.

    Article  CAS  PubMed  Google Scholar 

  39. Tanner BD. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapour disinfection system. Am J Infect Control. 2009;37:20–7.

    Article  PubMed  Google Scholar 

  40. Sexton JD, Tanner BD, Maxwell SL, et al. Reduction in the microbial load on high touch surfaces in hospital rooms by treatment with a portable saturated steam vapour disinfection system. Am J Infect Control. 2011;39:655–62.

    Article  PubMed  Google Scholar 

  41. Reed NG. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep. 2010;125(1):15–27.

    PubMed Central  PubMed  Google Scholar 

  42. Moore G, Ali S, Cloutman-Green EA, Bradley CR, Wilkinson MAC, Hartley JC, et al. Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the nanoclave cabinet. BMC Infect Dis. 2010;12:174.

    Article  Google Scholar 

  43. Chang JC, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM, Qualls RG, et al. UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol. 1985;49:1361–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Sinah RP, Hader DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1:225–36.

    Article  Google Scholar 

  45. Hijnen WAM, Beerendonk EF, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res. 2006;40:3–22.

    Article  CAS  PubMed  Google Scholar 

  46. Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis. 2010;10:197. This paper focused on the exposure of pathogens to the Tru-D UVC decontamination system in a variety of settings.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Boyce JM, Havill NL, Moore B. Terminal decontamination of patient rooms using an automated mobile UV light unit. Infect Control Hosp Epidemiol. 2011;32(8):737–42.

    Article  PubMed  Google Scholar 

  48. Anderson JG, Rowan NJ, MacGregor SJ, Fouacre RA, Farish O. Inactivation of foodborne enteropathogenic bacteria and spoilage fungi using pulsed light. IEEE Trans Plasma Sci. 1999;28:83–8.

    Article  Google Scholar 

  49. Wang T, MacGregor SJ, Anderson JG, Woolsey GA. Pulsed ultra violet inactivation spectrum of Escherichia coli. Water Res. 2005;39:2921–5.

    Article  CAS  PubMed  Google Scholar 

  50. Gomez-Lopex VM, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: a review. Trends Food Sci Technol. 2007;18:464–473.

    Article  Google Scholar 

  51. Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control. 2013;41(8):746–8. A good paper investigating the use of the PX-UV system in a hospital setting in conjunction with routine discharge cleaning.

    Article  PubMed  Google Scholar 

  52. Stibich M, Stachowiak J, Tanner B, Berkheiser M, Moore L, Raad I, et al. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on hospital operations and microbial reduction. Infect Control Hosp Epidemiol. 2011;32(3):286–8. This paper demonstrated a 100% reduction in positive cultures of VRE when PX-UV was used in conjunction with terminal cleaning.

    Article  PubMed  Google Scholar 

  53. Matsumura Y, Ananthaswamy HN. Toxic effects of ultra violet radiation on the skin. Toxicol Appl Pharmacol. 2004;195:298–308.

    Article  CAS  PubMed  Google Scholar 

  54. Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. Infect Control Hosp Epidemiol. 2010;31(10):1025–9.

    Article  PubMed  Google Scholar 

  55. Andrady AL, Hamid SH, Hu X, Torikai A. Effects of increased solar ultraviolet radiation on materials. J Photochem Photobiol B. 1998;46:96–103.

    Article  CAS  PubMed  Google Scholar 

  56. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect. 2014;88(1):1–11. This paper provides a comprehensive review of the antimicrobial properties of 405 nm light and its application for environmental disinfection.

    Article  CAS  PubMed  Google Scholar 

  57. Maclean M, MacGregor SJ, Anderson JG, Woolsey GA, Coia JE, Hamilton K, et al. Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. J Hosp Infect. 2010;76(3):247–51.

    Article  CAS  PubMed  Google Scholar 

  58. Bache SE, Maclean M, MacGregor SJ, Anderson JG, Gettinby G, Coia JE, et al. Clinical studies of the high-intensity narrow-spectrum light environmental decontamination system (HINS-light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings. Burns. 2012;38:69–76.

    Article  PubMed  Google Scholar 

  59. Maclean M, Booth M, MacGregor SJ, Anderson JG, Woolsey GA, Coia JE, et al. Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. J Infect Prev. 2013;14(5):176–81.

    Article  Google Scholar 

  60. Coyle A, Maclean M, Anderson JG, Gettinby G, MacGregor SJ, Taggart I. High-intensity narrow-spectrum light decontamination of a staff changing room in a burns ward. Burns. 2011;37(S1):S17.

    Article  Google Scholar 

  61. Maclean M, MacGregor SJ, Anderson JG, Woolsey GA. Inactivation of bacterial pathogens following exposure to light from a 405-nm LED array. Appl Environ Microbiol. 2009;75(7):1932–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. McKenzie K, Maclean M, Timoshkin IV, Endarko E, MacGregor SJ, Anderson JG. Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: potential application for biofilm decontamination. Photochem Photobiol. 2013;89:927–35.

    Article  CAS  PubMed  Google Scholar 

  63. Murdoch LE, McKenzie K, Maclean M, MacGregor SJ, Anderson JG. Lethal effects of high intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans and on dormant and germinating spores of Aspergillus niger. Fungal Biol. 2013;117:519–27.

    Article  CAS  PubMed  Google Scholar 

  64. Maclean M, Murdoch LE, MacGregor SJ, Anderson JG. Sporicidal effects of high-intensity 405 nm visible light on endospore-forming bacteria. Photochem Photobiol. 2013;89(1):120–6.

    Article  CAS  PubMed  Google Scholar 

  65. Tomb RM, Maclean M, Herron PR, Hoskisson PA, MacGregor SJ, Anderson JG. Inactivation of Streptomyces phage ɸC31 by 405 nm light: requirement for exogenous photosensitisers? Bacteriophage. 2014;4:e32129.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Bache SE, Maclean M, Anderson JG, Gettinby G, Coia JE, MacGregor SJ, et al. Laboratory inactivation of healthcare-associated isolates by a visible HINS-light source and its clinical application in the burns unit. Burns. 2011;37:S6.

    Article  Google Scholar 

  67. Bache SE, Maclean M, Gettinby G, Anderson JG, MacGregor SJ, Taggart I. Airborne bacterial dispersal during and after dressing and bed changes on burns patients. Burns. 2015. doi:10.1016/j.burns.2014.05.015. This paper provides quantitative evidence of the significant increase in airborne microbial contamination after bed and bandage change of patients.

    PubMed  Google Scholar 

  68. Piskin N, Celebi G, Kulah C, Mengeloglu Z, Yumusak M. Activity of a dry mist-generated hydrogen peroxide disinfection system against methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Am J Infect Control. 2011;39(9):757–62.

    Article  PubMed  Google Scholar 

  69. Haas JP, Menz J, Dusza S, Montecalvo MA. Implementation and impact of ultraviolet environmental disinfection in an acute care setting. Am J Infect Control. 2014;42(6):586–90.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Michelle Maclean, K. McKenzie, R. M. Tomb, J. E. Coia, S. J. MacGregor, S. Moorhead and J. G. Anderson declare that they have no conflict of interest relevant to this article. However, the intellectual property rights of the HINS-light EDS belong to the University of Strathclyde. The University has made all HINS-light EDS for research purposes only and no commercial company currently manufactures and sells this technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maclean PhD.

Additional information

This article is part of the Topical Collection on New Technologies and Advances in Infection Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maclean, M., McKenzie, K., Moorhead, S. et al. Decontamination of the Hospital Environment: New Technologies for Infection Control. Curr Treat Options Infect Dis 7, 39–51 (2015). https://doi.org/10.1007/s40506-015-0037-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-015-0037-5

Keywords

Navigation