Skip to main content
Log in

Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops

  • Review Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Globally, abiotic stresses can reduce the grain yield by more than 50% of the crop’s potential yield. In the current and future climates, combined drought and high-temperature stress will affect the global food system. In this review, the effects of combined drought and high-temperature stress on growth, anatomy, physiology, and yield were discussed. The first physiological effect in plants under combined drought and high-temperature stress was reduced water uptake and increased canopy temperature through reduced stomatal conductance. In most of the combined stresses, accumulation of reactive oxygen species (ROS) was observed because it was involved in the cell signalling process and activation of the defence process. Studies proved that enhanced ROS production under combined drought and high-temperature stress is associated with membrane damage through lipid peroxidation, resulting in a decreased photosynthetic rate. The decreased carbon assimilation is associated with increased photoinhibition, RuBisco (ribulose bisphosphate carboxylase/oxygenase) deactivation, disruptions in electron transport and damage to chloroplast ultrastructure. However, combined drought and high-temperature stress increased the respiration rate. The decreased synthesis and an increased utilization of carbohydrates under combined stresses can result in decreased crop growth and grain yield. Under combined stress, various reproductive processes viz., micro- and mega-sporogenesis, anthesis, pollination and fertilisation, embryo and seed development were adversely affected. Response to combined stress is complex and involves the contribution of various signalling molecules, transcription factors, hormones, and secondary metabolites for tolerance or susceptibility, and these factors have to be studied in detail for the development of combined stress-tolerant genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal, P. (2007). Climate change: Implications for Indian agriculture. Jalvigyan Sameeksha, 22(1), 37–46.

    Google Scholar 

  • Annadurai, M. K. K., Alagarsamy, S., Karuppasami, K. M., Ramakrishnan, S., Subramanian, M., Venugopal, P. R., Maduraimuthu, D., et al. (2023). Melatonin decreases negative effects of combined drought and high temperature stresses through enhanced antioxidant defense system in tomato leaves. Horticulturae, 9(6), 673.

    Article  Google Scholar 

  • Awasthi, R., Kaushal, N., Vadez, V., Turner, N. C., Berger, J., Siddique, K. H. M., et al. (2014). Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Functional Plant Biology, 41, 1148–1167.

    Article  CAS  PubMed  Google Scholar 

  • Badr, A., & Bruggemann, W. (2020). Comparative analysis of drought stress response of maize genotypes using chlorophyll fluorescence measurements and leaf relative water content. Photosynthetica, 58(2), 38–645.

    Google Scholar 

  • Barnabas, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell and Environment, 31(1), 11–38.

    Article  CAS  Google Scholar 

  • Boyer, J. S. (1982). Plant productivity and environment. Science, 218, 443–448.

    Article  CAS  PubMed  Google Scholar 

  • Buckley, T. N. (2019). How do stomata respond to water status? New Phytologist, 224(1), 21–36.

    Article  PubMed  Google Scholar 

  • Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Reports, 41(1), 1–31.

    Article  CAS  PubMed  Google Scholar 

  • Chilakala, A. R., Mali, K. V., Irulappan, V., Patil, B. S., Pandey, P., Rangappa, K., et al. (2022). Combined drought and heat stress influences the root water relation and determine the dry root rot Disease development under field conditions: A study using contrasting chickpea genotypes. Frontiers in Plant Science, 13, 890551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, I., Zandalinas, S. I., Fritschi, F. B., Sengupta, S., Fichman, Y., Azad, K., et al. (2021). The impact of water deficit and heat stress combination on the molecular response, physiology, and seed production of soybean. Physiologia Plantarum, 172, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove, D. (2000). Expansive growth of plant cell walls. Plant Physiology and Biochemistry, 38(1–2), 109–124.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Ouyang, S., Zhao, Y., Tie, L., Shao, C., & Duan, H. (2022). Plant responses to high temperature and drought: A bibliometrics analysis. Frontiers in Plant Science, 13, 1052660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Digrado, A., et al. (2017). Long-term measurements of chlorophyll a fluorescence using the JIP-test show that combined abiotic stresses influence the photosynthetic performance of the perennial ryegrass (Lolium perenne) in a managed temperate grassland. Physiologia Plantarum, 161, 355–371.

    Article  CAS  PubMed  Google Scholar 

  • El Haddad, N., Choukri, H., Ghanem, M. E., Smouni, A., Mentag, R., et al. (2021). High-temperature and drought stress effects on growth, yield and nutritional quality with transpiration response to vapor pressure deficit in lentil. Plants, 11(1), 95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estrada, F., Escobar, A., Romero-Bravo, S., Gonzalez-Talice, J., Poblete-Echeverría, C., Caligari, P. D. S., & Lobos, G. A. (2015). Fluorescence phenotyping in blueberry breeding for genotype selection under drought conditions, with or without heat stress. Scientia Horticulturae, 181, 147–161.

    Article  CAS  Google Scholar 

  • Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., & Zohaib, A. (2017). Crop production under drought and heat stress: Plant responses and management options. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2017.01147

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, H., Wang, S., Zong, X., Teng, Z., Zhao, F., & Liu, Z. (2012). Effects of combined high temperature and drought stress on amylose and protein contents at rice grain-filling stage. Chinese Journal of Eco-Agriculture, 20(1), 40–47.

    Article  CAS  Google Scholar 

  • Gunawardena, M., & De Silva, C. (2014). Identifying the impact of temperature and water stress on growth and yield parameters of Chilli (Capsicum annuum L.). Open University of Sri Lanka Journal, 7, 25–42.

    Google Scholar 

  • Gupta, A., & Pathak, H. (2016). Climate hange and Agriculture in India. A Thematic Report of National Mission on Strategic Knowledge for Climate Change (NMSKCC) under National Action Plan on Climate Change (NAPCC), Ministry of Science and Technology, Government of India (pp. 9–16).

  • Hannachi, S., Signore, A., Adnan, M., & Mechi, L. (2022). Single and associated effects of drought and heat stresses on physiological, biochemical and antioxidant machinery of four eggplant cultivars. Plants, 11(18), 2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, L., Guo, L., Li, R., Cheng, Y., Huang, L., et al. (2019). Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L). Scientia Horticulturae, 246, 251–264.

    Article  CAS  Google Scholar 

  • Hasegawa, T., Sakurai, G., Fujimori, S., Takahashi, K., Hijioka, Y., et al. (2021). Extreme climate events increase risk of global food insecurity and adaptation needs. Nature Food, 2(8), 587–595.

    Article  PubMed  Google Scholar 

  • Ho, L., Grange, R., & Picken, A. (1987). An analysis of the accumulation of water and dry matter in tomato fruit. Plant Cell and Environment, 10(2), 157–162.

    Article  Google Scholar 

  • Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., et al. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), 3890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jingmin, L., Chong, L., Zheng, X., Kaiping, Z., & Xue, K. (2012). A microfluidic pump/valve inspired by xylem Embolism and transpiration in plants. PLoS ONE, 7(11), e50320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jumrani, K., & Bhatia, V. S. (2019). Interactive effect of temperature and water stress on physiological and biochemical processes in soybean. Physiology and Molecular Biology of Plants, 25, 667–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapanigowda, M. H., Perumal, R., Djanaguiraman, M., Aiken, R. M., Tesso, T., Prasad, P. V., & Little, C. R. (2013). Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springerplus, 2, 650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kathirvel, A.K., Kalarani, M.K., Vijayalakshmi, D., Raveendran, M., Geethalakshmi, V., & Ananthi, V. (2023). Enhancement of grain yield under combined drought and high-temperature stress conditions by maintaining photosynthesis through antioxidant activities by melatonin (Personnel communication).

  • Kuppusamy, A., Alagarswamy, S., Karuppusami, K. M., Maduraimuthu, D., Natesan, S., Ramalingam, K., Muniyappan, U., Subramanian, M., & Kanagarajan, S. (2023). Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. Plants, 12(13), 2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamaoui, M., Jemo, M., Datla, R., & Bekkaoui, F. (2018). Heat and drought stresses in crops and approaches for their mitigation. Frontiers in Chemistry, 6, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, E., Zhao, J., Pullens, J. W., & Yang, X. (2022). The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Science of the Total Environment, 812, 152461.

    Article  CAS  PubMed  Google Scholar 

  • Lockhart, J. A. (1965). An analysis of irreversible plant cell elongation. Journal of Theoretical Biology, 8(2), 264–275.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, M., Sarkar, M., Khan, A., Biswas, M., Masi, A., Rakwal, R., Agrawal, G. K., Srivastava, A., & Sarkar, A. (2022). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants maintenance of structural individuality and functional blend. Advances in Redox Research, 5, 100039.

    Article  CAS  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C. (2021). IPCC 2021. In climate change 2021: The physical science basis. In Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change (pp. 31)

  • Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., & Cavanagh, A. P. (2021). The effect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 72(8), 2822–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morison, J. I. L., Baker, N. R., Mullineaux, P. M., & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 639–658.

    Article  CAS  Google Scholar 

  • Naz, R., Gul, F., Zahoor, S., Nosheen, A., Yasmin, H., Keyani, R., Shahid, M., Hassan, M., Siddiqui, M., & Batool, S. (2022). Interactive effects of hydrogen sulphide and silicon enhance drought and heat tolerance by modulating hormones, antioxidant defence enzymes and redox status in barley (Hordeum vulgare L). Plant Biology, 24(4), 684–696.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiology, 164(4), 1636–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonami, H. (1998). Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research, 111(3), 373–382.

    Article  Google Scholar 

  • Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Frontiers in Plant Science, 6, 723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perdomo, J. A., Conesa, M. A., Medrano, H., Ribas-Carbo, M., & Galmes, J. (2015). Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: Relationship with morphological and physiological acclimation. Physiologia Plantarum, 155, 149–165.

    Article  CAS  PubMed  Google Scholar 

  • Perumal, R., Tomar, S. S., Bandara, A., Maduraimuthu, D., Tesso, T. T., Prasad, P. V. V., & Little, C. R. (2020). Variation in stalk rot resistance and physiological traits of sorghum genotypes in the field under high temperature. Journal of General Plant Pathology, 86(5), 350–359.

    Article  CAS  Google Scholar 

  • Portner, H. O., Roberts, D. C., Adams, H., Adler, C., & Aldunce, P. (2022). Sixth Assessment Report, Climate Change 2022: Impacts, Adaptation and Vulnerability, the Working Group II contribution. https://www.ipcc.ch/report/ar6/wg2/

  • Prasad, P. V. V., Staggenborg, S. A., & Ristic, Z. (2008). Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: L.R. Ahuja, V.R. Reddy, S.A. Saseendran, Qiang Yu (eds.), Response of crops to limited water: Understanding and modeling water stress. Effects on plant growth processes (Vol. 1, pp. 301–355).

  • Priya, P., Patil, M., Pandey, P., Singh, A., Babu, V. S., & Senthil-Kumar, M. (2022). Stress combinations and their interactions in plants database (SCIPDb): a one-stop resource for understanding combined stress responses in plants. bioRxiv. https://doi.org/10.1101/2022.12.05.519235.

  • Qaderi, M. M., Kurepin, L. V., & Reid, D. M. (2006). Growth and physiological responses of canola (Brassica napus) to three components of global climate change: Temperature, carbon dioxide and drought. Physiologia Plantarum, 128(4), 710–721.

    Article  CAS  Google Scholar 

  • Rahman, M. A., Woo, J. H., Song, Y., Lee, S. H., Hasan, M. M., Azad, M. A. K., & Lee, K. W. (2022). Heat shock proteins and antioxidant genes involved in heat combined with drought stress responses in perennial rye grass. Life, 12(9), 1426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raja, V., Qadir, S. U., Alyemeni, M. N., & Ahmad, P. (2020). Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. Biotech, 10, 1–18.

    Google Scholar 

  • Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., et al. (2019). Impact of climate change on crops adaptation and strategies to Tackle its outcome: A review. Plants, 8(2), 34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, M., Canales, E., & Borras-Hidalgo, O. (2005). Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada, 22(1), 1–10.

    CAS  Google Scholar 

  • Ru, C., Hu, X., Chen, D., Song, T., Wang, W., Lv, M., & Hansen, N. C. (2022). Nitrogen modulates the effects of short-term heat, drought and combined stresses after anthesis on photosynthesis, nitrogen metabolism, yield, and water and nitrogen use efficiency of wheat. Water, 14(9), 1407.

    Article  CAS  Google Scholar 

  • Salgotra, R. K., & Chauhan, B. S. (2023). Ecophysiological responses of rice (Oryza sativa L.) to drought and high temperature. Agronomy, 13(7), 1877.

    Article  CAS  Google Scholar 

  • Savin, R., & Nicolas, M. E. (1996). Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Functional Plant Biology, 23(2), 201–210.

    Article  Google Scholar 

  • Sehgal, A., Sita, K., Kumar, J., Kumar, S., Singh, S., et al. (2017). Effects of drought, heat and their interaction on the growth, yield and photosynthetic function of lentil (Lens culinaris) genotypes varying in heat and drought sensitivity. Frontiers in Plant Sciences, 8, 1776.

    Article  Google Scholar 

  • Sehgal, A., Sita, K., Siddique, K. H. M., Kumar, R., Bhogireddy, S., Varshney, R. K., HanumanthaRao, B., Nair, R. M., Prasad, P. V. V., & Nayyar, H. (2018). Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science, 9, 1705.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanker, A. K., Amirineni, S., Bhanu, D., Yadav, S. K., Jyothilakshmi, N., Vanaja, M., & Singh, V. K. (2022). High-resolution dissection of photosystem II electron transport reveals differential response to water deficit and heat stress in isolation and combination in pearl millet [Pennisetum glaucum (L.) R. Br]. Frontiers in Plant Science, 13, 892676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinano, T., Komatsu, S., Yoshimura, T., Tokutake, S., Kong, F. J., et al. (2011). Proteomic analysis of secreted proteins from aseptically grown rice. Phytochemistry, 72(4–5), 312–320.

    Article  CAS  PubMed  Google Scholar 

  • Silva, E. N., Ferreira-Silva, S. L., de Vasconcelos Fontenele, A., Ribeiro, R. V., Viegas, R. A., & Silveira, J. A. G. (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167(14), 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  • Singh, J., & Thakur, J. K. (2018). Photosynthesis and abiotic stress in plants. In S. Vats (Ed.), Biotic and abiotic stress tolerance in plants (pp. 27–46). Springer.

    Chapter  Google Scholar 

  • Tariq, A., Zeng, F., Graciano, C., Ullah, A., Sadia, S., Ahmed, Z., Murtaza, G., Ismoilov, K., & Zhang, Z. (2023). Regulation of metabolites by nutrients in plants. In: Singh VP, Siddiqui H. (eds.), Plant Ionomics: Sensing, Signaling, and Regulation, 1–18.

  • Thitz, P., Possen, B., Oksanen, E., Mehtätalo, L., Virjamo, V., et al. (2017). Production of glandular trichomes responds to water stress and temperature in silver birch (Betula pendula) leaves. Canadian Journal of Forest Research, 47(8), 1075–1081.

    Article  CAS  Google Scholar 

  • Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M. E., & Williams, A. (2023). Climate change will accelerate the high-end risk of compound drought and heatwave events. Proceedings of the National Academy of Sciences, 120(28), e2219825120.

    Article  CAS  Google Scholar 

  • Vadez, V. (2014). Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Research, 165, 15–24.

    Article  Google Scholar 

  • Venkateswarlu, B., & Rama Rao, C. A. (2010). Rainfed agriculture: Challenges of climate change. In Agriculture Today Yearbook (pp. 43–45).

  • Venkateswarlu, B., & Shanker, A. K. (2011). Dryland agriculture: bringing resilience to crop production under changing climate. Crop stress and its management: Perspectives and strategies (pp. 19–44). Springer.

    Google Scholar 

  • Vera Hernández, P. F., Onofre, M. L. E., & Rosas Cárdenas, F. (2023). Responses of sorghum to cold stress: A review focused on molecular breeding. Frontiers in Plant Science, 14, 1124335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vescio, R., Abenavoli, M. R., & Sorgona, A. (2021). Single and combined abiotic stress in Maize Root morphology. Plants, 10(1), 5.

    Article  CAS  Google Scholar 

  • Webb, A., & Wadhwa, A. (2016). The impact of drought on households in four provinces in Eastern Indonesia. World Food Programme Indonesia.

  • Xu, Z., & Zhou, G. (2006). Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus Chinensis. Planta, 224, 1080–1090.

    Article  CAS  PubMed  Google Scholar 

  • Zandalinas, S. I., Balfagon, D., Arbona, V., Gomez-Cadenas, A., Inupakutika, M. A., & Mittler, R. (2016). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. Journal of Experimental Botany, 67, 5381–5390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gomez-Cadenas, A. (2017). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162, 2–12.

    Article  PubMed  Google Scholar 

  • Zhanassova, K., Kurmanbayeva, A., Gadilgereyeva, B., Yermukhambetova, R., Iksat, N., Amanbayeva, U., Bekturova, A., Tleukulova, Z., Omarov, R., & Masalimov, Z. (2021). ROS status and antioxidant enzyme activities in response to combined temperature and drought stresses in barley. Acta Physiologiae Plantarum, 43(8), 1–12.

    Article  Google Scholar 

  • Zhao, W., Sun, Y., Kjelgren, R., & Liu, X. (2015). Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum, 37, 1–9.

    Article  Google Scholar 

  • Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., et al. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17(1), 1–13.

    Article  CAS  Google Scholar 

  • Zhou, R., Yu, X., Wen, J., Jensen, N. B., Santos, D., et al. (2020). Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis. BMC Plant Biology, 20, 1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, DM, SA, AK, KAMK, and KAK, supervision, SA, MKK, and DM; writing - original draft, AK and DM; writing - review and editing, DM, SA, AK, KA, MK, and KAK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Djanaguiraman.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamatchi, K.A.M., Anitha, K., Kumar, K.A. et al. Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops. Plant Physiol. Rep. 29, 28–36 (2024). https://doi.org/10.1007/s40502-023-00754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-023-00754-4

Keywords

Navigation