Skip to main content

Advertisement

Log in

Identification of salt tolerant sugarcane cultivars through phenotypic, physiological and biochemical studies under abiotic stress

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Sugarcane is one of the typical glycophyte grass plant which can poorly thrive in saline soil profiles of tropics and subtropics globally. Salt stress is a major physiological constrain drastically influencing plant growth and development. Identification of salt-tolerant cultivars can make a substantial contribution to greater productivity of sugarcane in salt stress prone areas. Based upon descriptive phenotypes 38 sugarcane cultivars were included in the present study. Cultivars evaluated in pots at formative and grand growth stages of development under 8 dSm−1 levels of salts (NaCl, Na2SO4, CaCl2·2H2O; 1:2:1 ratio) during two consecutive cropping seasons. Key morphological, physiological and biochemical traits were measured under different levels of salt stress. Recorded data was converted into relative salt tolerance indices (RSTI) for comparative study among genotypes for salt tolerance with multiple agronomic traits. Significant variations were observed between the cultivars at the both growth stages. RSTI for all the studied traits varied considerably such as; for proline contents it was calculated lowest (102.7) in Co 0239 and highest (287.2) in Co 7717 cultivar. Considering the salt tolerance indices derived from morphological, physiological, and biochemical observations indicated that 13 sugarcane cultivars were tolerant, while 13 moderately tolerant and rest 12 cultivars were not capable to grow optimally in salinity and showed susceptibility to salt stress. The tolerance rank of an individual cultivar was based on genotype rank (GR) determined with RSTI and ward’s minimum variance of studied parameters. GR ranged from 1 to 3, wherein GR 1 denotes tolerant, GR 2 moderate and GR 3 for susceptible to salt stress. To conclude, salt tolerant cultivars identified and salt tolerance-associated traits can be exploited in breeding programs to improve sugarcane production in saline areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrol, I.P., Yadov, J.S.P., & Massiud, F.I. (1988). Salt effected soils and their management. Soil Resours. Manage. Conservation Services. FAO Land and Water Development Division Bulletin 39.

  • Akhtar, S., Wahid, A., Akram, M., & Rasul, E. (2001). Effect of NaCl salinity on yield parameters of some sugarcane genotypes. International Journal of Agriculture and Biology, 3, 507–509.

    Google Scholar 

  • Al-Ashkar, I., Alderfasi, A., El-Hendawy, S., Al-Suhaibani, N., El-Kafafi, S., & Seleiman, M. F. (2019). Detecting salt tolerance in doubled haploid wheat lines. Agronomy, 9(4), 211.

    Article  CAS  Google Scholar 

  • Ali, M. N., Ghosh, B., Gantait, S., & Chakraborty, S. (2014). Selection of rice genotypes for salinity tolerance through morpho-biochemical assessment. Rice Science, 21(5), 288–298.

    Article  Google Scholar 

  • Ali, Z., Salam, A., Azhar, F. M., & Khan, I. A. (2007). Genotypic variation in salinity tolerance among spring and winter wheat (Triticum eastivum L.) accessions. South African Journal of Botany, 73(1), 70–75.

    Article  CAS  Google Scholar 

  • Allel, D., BenAmar, A., Badri, M., & Abdelly, C. (2019). Evaluation of salinity tolerance indices in North African barley accessions at reproductive stage. Czech Journal of Genetics and Plant Breeding, 55(2), 61–69.

    Article  Google Scholar 

  • Arnon, D. I. (1949). Copper enzyme in isolated chloroplasts polyphenol oxidase in Beta vulgaris (L.). Plant Physiology, 24(1), 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M., Kanwal, S., Tahir, M. A., Sarwar, A., & Ali, L. (2007). Differential salt tolerance of sugarcane genotypes. Pakistan Journal of Agricultural Sciences, 44(1), 85–89.

    Google Scholar 

  • Azevedo, R. A., Carvalho, R. F., Cia, M. C., & Gratão, P. L. (2011). Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology, 4(1), 42–51.

    Article  CAS  Google Scholar 

  • Barrs, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413–428.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205–207.

    Article  CAS  Google Scholar 

  • Beddington, J. et al. (2012). Achieving food security in the face of climate change. Final report from the Commission on Sustainable Agriculture and Climate Change. Copenhagen, CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). (Available at http://www.ccafs.cgiar.org/commission).

  • Burman, U., Garg, B. K., & Kathju, S. (2003). Water relations, photosynthesis and nitrogen metabolism of Indian mustard (Brassica Juncea Czern & Coss) grown under salt and water stress. Journal of Plant Biology, 30(1), 55–60.

    Google Scholar 

  • Carter, J.E., & Patterson, R.P. (1985). Use of relative water content as a selection tool for drought tolerance in soybean. In: 1985 Agronomy Abstract. ASA. Madison, WI.

  • Chakherchaman, S. A., Mostafaei, H., Imanparast, L., & Eivazian, M. R. (2009). Evaluation of drought tolerance in lentil advanced genotypes in Ardabil region. Iranian Journal of Food Agriculture and Environment, 7(3/4), 283–288.

    Google Scholar 

  • Cha-um, S., Chuencharoen, S., Mongkolsiriwatana, C., Ashraf, M., & Kirdmanee, C. (2012). Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell, Tissue and Organ Culture, 110(1), 23–33.

    Article  CAS  Google Scholar 

  • Devi, E. L., Kumar, S., Singh, T. B., Sharma, S. K., Beemrote, A., Devi, C. P., et al. (2017). Adaptation strategies and defence mechanisms of plants during environmental stress. In: Medicinal plants and environmental challenges (pp. 359–413). Cham: Springer.

    Google Scholar 

  • Drew, M. C., Hold, P. S., & Picchioni, G. A. (1990). Inhibition by NaCl of net CO2 fixation and yield of cucumber. Journal of the American Society for Horticultural Science, 115(3), 472–477.

    Article  CAS  Google Scholar 

  • Errabii, T., Gandonou, C. B., Essalmani, H., Abrini, J., Idaomar, M., & Senhaji, N. S. (2007). Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiologia Plantarum, 29(2), 95.

    Article  CAS  Google Scholar 

  • Farquhar, G. D., Cernusak, L. A., & Barnes, B. (2007). Heavy water fractionation during transpiration. Plant Physiology, 143(1), 11–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomathi, R., & Thandapani, T. V. (2005). Salt stress in relation to nutrient accumulation and quality of sugarcane genotypes. Sugar Tech, 7(1), 39–47.

    Article  CAS  Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Biology, 51(1), 463–499.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. Pentice Hall of India Pvt. Ltd.

    Google Scholar 

  • Katerji, N., Mastrorilli, M., Van Hoorn, J. W., Lahmer, F. Z., Hamdy, A., & Oweis, T. (2009). Durum wheat and barley productivity in saline–drought environments. European Journal of Agronomy, 31(1), 1–9.

    Article  Google Scholar 

  • Kausar, A., Ashraf, M. Y., Ali, I., Niaz, M., & Abbass, Q. (2012). Evaluation of sorghum varieties/lines for salt tolerance using physiological indices as screening tool. Pakistan Journal of Botany, 44(1), 47–52.

    CAS  Google Scholar 

  • Landell, M. G., & Ribeiro, R. V. (2018). Drought tolerance of sugarcane is improved by previous exposure to water deficit. Journal Plant Physiology, 223, 9–18.

    Article  Google Scholar 

  • Lawlor, D. W., & Cornic, G. (2002). Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 2, 275–294.

    Article  Google Scholar 

  • Long, S. P., & Bernacchi, C. J. (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393–2401.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Faar, A. L., & Randall, R. J. (1951). Protein measurement with Follen Phenol reagent. Journal of Biochemistry, 193, 265–275.

    CAS  Google Scholar 

  • Mahajan, S. T., Naik, R. M., & Dalvi, U. S. (2013). Assessment of biochemical markers in differentiating sugarcane genotypes for salt tolerance. Sugar Tech, 15(2), 116–121.

    Article  CAS  Google Scholar 

  • Manners, J. M., & Casu, R. E. (2011). Transcriptome analysis and functional genomics of sugarcane. Tropical Plant Biology, 4(1), 9–21.

    Article  CAS  Google Scholar 

  • Marcos, F. C., Silveira, N. M., Mokochinski, J. B., Sawaya, A. C., Marchiori, P. E., et al. (2018). Drought tolerance of sugarcane is improved by previous exposure to water deficit. Journal of Plant Physiology, 223, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Medeiros, C. D., Neto, J. R. F., Oliveira, M. T., Rivas, R., Pandolfi, V., Kido, E. A., Baldani, J. I., & Santos, M. G. (2014). Photosynthesis, antioxidant activities and transcriptional responses in two sugarcane (Saccharum officinarum L.) cultivars under salt stress. Acta Physiologiae Plantarum, 36(2), 447–459.

    Article  CAS  Google Scholar 

  • Moradi, F., & Ismail, A. M. (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annals of Botany, 99(6), 1161–1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns, R., & James, R. A. (2003). Screening methods for salinity tolerance: A case study with tetraploid wheat. Plant and Soil, 253(1), 201–218.

    Article  CAS  Google Scholar 

  • Nasir, M. N., Riaz, H. Q., & Muhammad, A. (2000). Effect of salinity on emergence of sugarcane lines. Pakistan Sugar Journal, 15(2), 12–14.

    Google Scholar 

  • Noble, C. L., & Rogers, M. E. (1992). Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil, 146(1–2), 99–107.

    Article  CAS  Google Scholar 

  • Patade, V. Y., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: Growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interactions, 6(4), 275–282.

    Article  CAS  Google Scholar 

  • Plaut, Z., Meinzer, F. C., & Federman, E. (2000). Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant and Soil, 218(1–2), 59–69.

    Article  CAS  Google Scholar 

  • Rozeff, N. (1998). Irrigation water salinity and macro yields of sugarcane in south Texas. Sugarcane, 2, 3–6.

    Google Scholar 

  • Sairam, R. K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 584–593.

    Google Scholar 

  • Saxena, P., Srivastava, R. P., & Sharma, M. L. (2010). Studies on salinity stress tolerance in sugarcane varieties. Sugar Tech, 12(1), 59–63.

    Article  CAS  Google Scholar 

  • Shannon, M. C., Grieve, C. M., & Francois, L. E. (1994). Whole plant response to salinity. In: R. E. Wilkinson (Ed.), Plant-environment interactions ( (pp. 199–244). New York, NY, USA: Marcel Dekker Inc.

    Google Scholar 

  • Singh, R. B., Jugran, A. K., Singh, R. K., & Srivastava, R. K. (2020). Assessing genetic diversity and population structure of sugarcane cultivars, progenitor species and genera using microsatellite (SSR) markers. Gene, 753, 144800.

    Article  CAS  PubMed  Google Scholar 

  • Singh, R. B., Singh, B., & Singh, R. K. (2019). Cross-taxon transferability of sugarcane expressed sequence tags derived microsatellite (EST-SSR) markers across the related cereal grasses. Journal of Plant Biochemistry and Biotechnology, 28(2), 176–188.

    Article  CAS  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2011). Identification of sugarcane microsatellites associated to sugar content in sugarcane and transferability to other cereal genomes. Euphytica, 182(3), 335.

    Article  CAS  Google Scholar 

  • Singh, R. K., Singh, R. B., Singh, S. P., & Sharma, M. L. (2012). Genes tagging and molecular diversity of red rot susceptible/tolerant sugarcane hybrids using c-DNA and unigene derived markers. World Journal of Microbiology and Biotechnology, 28(4), 1669–1679.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, S. (2016). Sugarcane production and development of sugar industry in India. Sugar Tech, 18(6), 588–602.

    Article  Google Scholar 

  • Srivastava, H. S. (1974). In vitro activity of nitrate reductase in maize seedling. Indian Journal of Biochemistry and Biophysics, 11, 230–232.

    CAS  PubMed  Google Scholar 

  • Stickler, F. C., Wearden, S., & Pauli, A. W. (1961). Leaf area determination in grain sorghum. Agronomy Journal, 53(3), 187–188.

    Article  Google Scholar 

  • Subbarao, M., & Shaw, M. A. E. (1985). A review of research on sugarcane soils of Jamaica. Proceedings of Meeting, West Indies Sugar Technologists’, 2, 343–355.

    Google Scholar 

  • Tanji, K. K. (1990). Nature and extent of agricultural salinity. In K. K. Tanji (Ed.), Agricultural salinity assessment and management (pp. 1–13). American Society of Civil Engineers.

    Google Scholar 

  • Tiku, M. F., Mohammed, H., & Gebrekidan, H. (2014). Screening of introduced sugarcane genotypes for their salinity tolerance based on yield components at Metahara Sugar Estate. Time Journal Agriculture and Veterinary Science, 2, 107–113.

    Google Scholar 

  • Vasantha, S., Venkataramana, S., Rao, P. G., & Gomathi, R. (2010). Long term salinity effect on growth, photosynthesis and osmotic characteristics in sugarcane. Sugar Tech, 12(1), 5–8.

    Article  CAS  Google Scholar 

  • Wahid, A., & Rasul, E. (1997). Identification of salt tolerance traits in sugarcane lines. Field Crop Research, 54(1), 9–17.

    Article  Google Scholar 

  • Winicov, I., & Button, J. D. (1991). Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells. Planta, 183(4), 478–483.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10(12), 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, A. R., Lee, A. S., Izard, P., Boursier, P. J., & Flowers, T. J. (1991). Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany, 42(7), 881–889.

    Article  CAS  Google Scholar 

  • Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., & Jiang, G. (2008). Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 165(14), 1455–1465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Departments of Agronomy and Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology (SVPUA&T), Meerut, (Uttar Pradesh), India for providing essential facilities and laboratory equipments to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

VPR and RSS conceived and designed the study. VPR: performed experiments and data analysis. RBS: wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to R. B. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest directly or indirectly and informed consent to publish this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (DOCX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, V.P., Sengar, R.S. & Singh, R.B. Identification of salt tolerant sugarcane cultivars through phenotypic, physiological and biochemical studies under abiotic stress. Plant Physiol. Rep. 26, 256–283 (2021). https://doi.org/10.1007/s40502-021-00581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00581-5

Keywords

Navigation