Skip to main content
Log in

Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant

  • Review Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Paclobutrazol [(2RS, 3RS)-1-(4-chlorophenyl)-4, 4-dimethyl-2-(1H-1, 2, 4-trizol-1-yl)-pentan-3-ol], is one of the members of triazole family having growth regulating property. The growth regulating properties of paclobutrazol are mediated by changes in the levels of important plant hormones including the gibberellins (GAs), abscisic acid (ABA) and cytokinins (CK). Paclobutrazol (PBZ) affects the isoprenoid pathway, and alters the levels of plant hormones by inhibiting gibberellin synthesis and increasing cytokinins level. When gibberellins synthesis is inhibited, more precursors in the terpenoid pathway accumulate and that resulted to the production of abscisic acid. PBZ has been used to provide plant protection against numerous abiotic stresses such as chilling, water deficit stress, flooding and salinity. Paclobutrazol acts as stress protectant by maintaining relative water content, membrane stability index, photosynthetic activity, photosynthetic pigments and protects the photosynthetic machinery by enhancing the level of osmolytes, antioxidant activities and level of endogenous hormones and thereby enhances the yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbadi, A., Shekari, F., & Mustafavi, S. H. (2015). Effect of paclobutrazol and salicylic acid on antioxidants enzyme activity in drought stress in wheat. Idesia (Chile), 33, 5–13.

    Article  Google Scholar 

  • Abraham, S., Jaleel, C. A., Somasundaram, R., Azooz, M. M., Manivannan, P., & Panneerselvam, R. (2008). Regulation of growth and metabolism by paclobutrazol and ABA in Sesamum indicum L. under drought condition. Global Journal of Molecular Science, 3, 57–66.

    CAS  Google Scholar 

  • Abu-Muriefah, S. S. (2015). Effects of paclobutrazol on growth and physiological attributes of soybean (Glycine max) plants grown under water stress conditions. International Journal of Advanced Research in Biological Sciences, 2, 81–93.

    CAS  Google Scholar 

  • Agarie, S., Hanaoka, N., Kubota, F., Agata, W., & Kaufman, P. B. (1995). Measurement of cell membrane stability evaluated by electrolyte leakage as a drought and heat tolerance test in rice (Oryza sativa L.). Journal of the Faculty of Agriculture Kyushu University, 40, 233–240.

    Google Scholar 

  • Aly, A., & Latif, H. (2011). Differential effects of paclobutrazol on water stress alleviation through electrolyte leakage, phytohormones, reduced glutathione and lipid peroxidation in some wheat genotypes (Triticum aestivum L.) grown in-vitro. Romanian Biotechnological Letters, 16, 6710–6721.

    CAS  Google Scholar 

  • Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.

    Article  CAS  Google Scholar 

  • Asamoah, T. E. O., & Atkinson, D. (1985). The effects of (2RS, 3RS)-1-(4-chlorophenyl)-4,4 dimethyl-2-(1H-1,2,4 triazol-1-yl) pentan-3-ol (paclobutrazol:PP333) and root pruning on the growth, water use and response to drought of colt cherry rootstocks. Plant Growth Regulation, 3, 37–45.

    Article  CAS  Google Scholar 

  • Asare-Boamah, N. K., Hofstra, G., Fletcher, R. A., & Dumbroff, E. B. (1986). Triadimefon protect bean plants from water stress through its effect on abscisic acid. Plant Cell Physiology, 27, 383–390.

    CAS  Google Scholar 

  • Bandurska, H. (2000). Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? Free proline accumulation and membrane injury index in drought and osmotically stressed plants. Acta Physiologiae Plantarum, 22, 409–415.

    Article  CAS  Google Scholar 

  • Baninasab, B. (2009). Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia Horticulturae, 121, 144–148.

    Article  CAS  Google Scholar 

  • Baninasab, B., & Ghobadi, C. (2011). Influence of paclobutrazol and application methods on high-tempeature stress injury in cucumber seedlings. Journal of Plant Growth Regulation, 30, 213–219.

    Article  CAS  Google Scholar 

  • Berova, M., & Zlatev, Z. (2000). Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regulation, 30, 117–123.

    Article  CAS  Google Scholar 

  • Berova, M., & Zlatev, Z. (2003). Physiological response of paclobutrazol treated triticale plants to water stress. Biologia Plantarum, 46, 133–136.

    Article  CAS  Google Scholar 

  • Bisht, R., Singariya, P., Bohra, S. P., & Mathur, N. (2007). Triazoles: Their effects on net photosynthetic rate, transpiration rate and stomatal resistance in Setaria italica plants grown in vivo. Asian Journal of Experimental Sciences, 21, 271–276.

    Google Scholar 

  • Burden, R. S., James, C. S., Cooke, D. T., & Anderson, N. H. (1987). C-14 demethylation in phytosterol biosynthesis-a new target site for herbicidal activity. Proceedings of Brighton Crop Protection Conference on Weeds, 3, 171–178.

    Google Scholar 

  • Burrows, G. E., Boag, T. S., & Stewart, W. P. (1992). Changes in leaf, stem and root anatomy of chrysanthemum cv. Lillian Hock following paclobutrazol application. Journal of Plant Growth Regulation, 11, 189–194.

    Article  CAS  Google Scholar 

  • Buta, J. G., & Spaulding, D. W. (1991). Effect of paclobutrazol on abscisic acid levels in wheat seedlings. Journal of Plant Growth Regulation, 10, 1–5.

    Article  Google Scholar 

  • Christov, C., Tsvetkov, J., & Kovachev, V. (1995). Use of paclobutrazol to control vegetative growth and improve fruiting efficiency of grapevines (Vitis vinifera L.). Bulgarian Journal of Plant Physiology, 21, 64–71.

    CAS  Google Scholar 

  • Cornic, G. (2000). Drought stress inhibits photosynthesis by decreasing stomatal aperture: Not by affecting ATP synthesis. Trends in Plant Science, 5, 187–188.

    Article  Google Scholar 

  • Dalziel, J., & Lawrence, D. K. (1984). Biochemical and biological effects of kaurene oxidase inhibitors, such as paclobutrazol. British Plant Growth Regulator Group Monograph, 11, 43–57.

    CAS  Google Scholar 

  • Davis, T. D., Sankhla, N., & Upadhyaya, A. (1986). Paclobutrazol: A promising plant growth regulator. In S. S. Purohit (Ed.), Hormonal regulation of plant growth and development (pp. 311–332). Bikaner: Agrobotanical Publishers.

    Google Scholar 

  • Davis, T. D., Steffens, G. L., & Sankhla, N. (1988). Triazol plant growth regulators. Horticultural Review, 10, 151–188.

    Google Scholar 

  • Emam, Y., & Seghatoeslami, M. J. (2005). Crop Yield, Physiology and Processes (p. 599). Shiraz: Shiraz University Press.

    Google Scholar 

  • Fedtke, C. (1973). Effect of herbicide methabenzthiazuron on the physiology of wheat plants. Pesticide Science, 4, 653–664.

    Article  CAS  Google Scholar 

  • Fedtke, C. (1974). Influence of methabenzthiazuron on ATP level and protein synthesis in wheat. Pesticide Biochemistry and Physiology, 4, 386–392.

    Article  CAS  Google Scholar 

  • Fletcher, R. A., Gilley, A., Davis, T. D., & Sankhla, N. (2000). Triazoles as plant growth regulators and stress protectants. Horticultural Review, 24, 55–138.

    CAS  Google Scholar 

  • Fletcher, R. A., & Hofstra, G. (1990). Improvement of uniconazole-induced protection in wheat seedlings. Journal of Plant Growth Regulation, 9, 207–212.

    Article  CAS  Google Scholar 

  • Foyer, C. H. (1993). Ascorbic acid. In R. G. Alscher & J. L. Hess (Eds.), Antioxidants in higher plants (pp. 31–58). Florida: CRC Press.

    Google Scholar 

  • Foyer, C. H., & Noctor, G. (2001). The molecular biology and metabolism of glutathione. In D. Grill, M. Tausz, & I. J. De Kok (Eds.), Significance of glutathione in plant adaptation to the environment (pp. 27–57). Dordrecht: Kluwer academic publishers.

    Chapter  Google Scholar 

  • Gadi, B. R., Laxmi, V., & Bohra, S. P. (2001). Note on effect of plant regulators on net photosynthetic rate, transpiration rate and stomatal resistance in ber (Zizyphus mauritiana cv. Seb). Current Agriculture Research Journal, 25, 143–146.

    Google Scholar 

  • George, A. P., & Nissen, R. J. (1992). Effects of water stress, nitrogen and paclobutrazol on flowering, yield and fruit quality of the low-chill peach cultivar, ‘flordaprince’. Scientia Horticulturae, 49, 197–199.

    Article  CAS  Google Scholar 

  • Gilley, A., & Fletcher, R. A. (1997). Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. Journal of Plant Growth Regulation, 21, 169–175.

    Article  CAS  Google Scholar 

  • Gomathinayagam, M., Azooz, M. M., Jaleel, C., & Panneerselvam, R. (2009). Superoxide dismutase and ascorbate peroxidase profile changes with triazole applications in Manihot esculenta Crantz. Global Journal of Molecular Sciences, 4, 23–28.

    CAS  Google Scholar 

  • Gopi, R., & Jaleel, C. (2009). Photosynthetic alterations in Amorphophallus campanulatus with triazoles drenching. Global Journal of Molecular Sciences, 4, 15–18.

    CAS  Google Scholar 

  • Gopi, R., Jaleel, C., Sairam, R., Lakshmanan, G. M. A., Gomathinayagam, M., & Panneerselvam, R. (2007). Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids and Surfaces B: Biointerfaces, 60, 180–186.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, K. (1988). Plant cell suspensions for screening and studying the mode of action of plant growth retardants. In K. Maramorosch & G. Sato (Eds.), Advances in cell culture (pp. 89–136). San Diego: Academic Press.

    Google Scholar 

  • Grover, A., Kapoor, A., Kumar, D., Shashidhar, H. E., & Hittalmani, S. (2004). Genetic improvement for abiotic stress responses. In H. K. Jain & M. C. Kharkwal (Eds.), Plant breeding-mendelian to molecular approaches (pp. 167–193). New Delhi: Narosa Publishing House.

    Google Scholar 

  • Gupta, D. K., Tripati, R. D., Rai, U. N., Dwivedi, S., Mishra, S., Srivastava, S., et al. (2007). Changes in amino acid profile and metal content in seeds of Cicer arietinum L. (chickpea) grown under various fly-ash amendments. Chemosphere, 66, 1382–1385.

    Article  CAS  Google Scholar 

  • Hajihashemi, S., & Ehsanpour, A. A. (2013). Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia, 68, 414–420.

    Article  CAS  Google Scholar 

  • Hedden, P., & Graebe, J. E. (1985). Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free hornogenates of Cucurbita maxima endosperm and Maills pumila embryos. Journal of Plant Growth Regulation, 4, 21–25.

    Article  Google Scholar 

  • Hunter, M., & Proctor, T. A. (1994). Paclobutrazol reduces photosynthetic carbon dioxide uptake rate in grapevines. Journal of the American Society for Horticultural Science, 119, 486–491.

    CAS  Google Scholar 

  • Jain, S. K., Sing, R., & Misra, K. K. (2002). Effect of paclobutrazol on growth, yield and fruit quality of lemon (Citrus limon). Indian Journal of Agricultural Science, 72, 488–490.

    Google Scholar 

  • Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2007a). Responses of antioxidant defense system of Catharanthus roseus (L.) to paclobutrazol treatment under salinity. Acta Physiologiae Plantarum, 29, 205–209.

    Article  CAS  Google Scholar 

  • Jaleel, C. A., Gopi, R., & Panneerselvam, R. (2008a). Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. Comptes Rendus Biologies, 331, 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Gomathinayagam, M., Sridharan, R., & Panneerselvam, R. (2007b). Responses of antioxidant potentials in Dioscorea rotundata following paclobutrazol drenching. Comptes Rendus Biologies, 330, 798–805.

    Article  CAS  PubMed  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Lakshmanan, G. M. A., Gomathinayagam, M., & Panneerselvam, R. (2008b). Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and Surfaces B: Biointerfaces, 61, 298–303.

    Article  CAS  PubMed  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., Sankari, S., & Panneerselvam, R. (2006). Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochemistry, 42, 1566–1570.

    Article  CAS  Google Scholar 

  • Jaleel, C. A., Manivannan, P., Sankar, B., Kishorekumar, A., Sankari, S., & Panneerselvam, R. (2007c). Paclobutrazol enhances photosynthesis and ajmalicine production in Catharanthus roseus. Process Biochemistry, 42, 1566–1570.

    Article  CAS  Google Scholar 

  • Jenks, M. A., Andersen, L., Teusink, R. S., & Williams, M. H. (2001). Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiologia Plantarum, 112, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Jungklang, J., & Saengnil, K. (2012). Effect of paclobutrazol on patumma cv. Chiang Mai Pink under water stress. Songklanakarin Journal of Science and Technology, 34, 361–366.

    CAS  Google Scholar 

  • Kamountsis, A. P., & Sereli, C. (1999). Paclobutrazol affects growth and flower bud production in gardenia under different light regimes. Hort Science, 34, 674–675.

    Google Scholar 

  • Khalil, A., & Rahman, H. (1995). Effect of paclobutrazol on growth, chloroplast pigments and sterol biosynthesis of maize (Zea mays L.). Plant Science, 105, 15–21.

    Article  CAS  Google Scholar 

  • Kolodziejek, I., Waleza, M., & Mostowska, A. (2003). Ultrastructure of mesophyll cells and pigment content in senescing leaves of maize and barley. Journal of Plant Growth Regulation, 22, 217–227.

    Article  CAS  Google Scholar 

  • Kumar, P. (2003). Photosynthetic and yield response of pea (Pisum sativum L.) to foliar application of salicylic acid and phytohormones in Uttaranchal hills. Journal of Indian Botanical Society, 82, 67–73.

    Google Scholar 

  • Kumar, S., Ghatty, S., Satyanarayana, J., Guha, A., Chaitanya, B. S. K., & Reddy, A. (2012). Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown Camelina sativa L. Crantz. BMC Research Notes, 5, 1–13.

    CAS  Google Scholar 

  • Kumar, K. A., Jaleel, C., Manivannan, P., Sankar, B., Sridharan, R., Somasundaram, R., et al. (2006). Differential effects of hexaconazole and paclobutrazol on the foliage characteristics of chinese potato (Solenostemon rotundifolius Poir., J.K. Morton). Acta Biologica Szegediensis, 50, 127–129.

    Google Scholar 

  • Kumar, P., Lakshmi, N. J., & Mani, V. P. (2000). Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill). Physiology and Molecular Biology of Plants, 6, 179–186.

    Google Scholar 

  • Larson, M. H., Davis, T. D., & Evans, R. P. (1988). Modulation of protein expression in uniconazole treated soybean in relation to heat stress. Proceedings of Plant Growth Regulation Society of America, 15, 177–182.

    Google Scholar 

  • Mabvongwe, O., Manenji, B. T., Gwazane, M., & Chandiposha, M. (2016). The effect of paclobutrazol application time and variety on growth, yield, and quality of potato (Solanum tuberosum L.). Advances in Agriculture. doi:10.1155/2016/1585463.

    Google Scholar 

  • Mahoney, S., Ghosh, S., Peirson, D., & Dumbroff, E. (1998). Paclobutrazol affects the resistance of black spruce to high light and thermal stress. Tree Physiology, 18, 121–127.

    Article  CAS  PubMed  Google Scholar 

  • Manivannan, P., Jaleel, C. A., Kishorekumar, A., Sankar, B., Somasundaram, R., Sridharan, R., et al. (2007). Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. by propiconazole under water deficit stress. Colloids and Surfaces B: Biointerfaces, 57, 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, J., Beardmore, T., Whittle, C. A., Wang, B., Rutledge, R. G., & Blumwald, E. (2000). The effects of paclobutrazol, abscisic acid, and gibberellin on germination and early growth in silver, red, and hybrid maple. Canadian Journal of Forest Research, 30, 557–565.

    Article  CAS  Google Scholar 

  • Marshall, J. G., Scarratt, J. B., & Dumbroff, E. B. (1991). Induction of drought resistance by abscisic acid and paclobutrazol in jack pine. Tree Physiology, 8, 415–421.

    Article  CAS  Google Scholar 

  • Merah, O. (2001). Potential importance of water status traits for duram wheat improvement under Mediterranean conditions. Journal of Agricultural Science, 137, 139–145.

    Google Scholar 

  • Mohamed, G. F., Agamy, R. A., & Rady, M. M. (2011). Ameliorative effects of some antioxidants on water-stressed tomato (Lycopersicon esculentum Mill.) plants. Journal of Applied Sciences Research, 7, 2470–2478.

    CAS  Google Scholar 

  • Navarro, A., Blanco, M., & Banon, S. (2007). Influence of paclobutrazol on water consumption and plant performance of Arbutus unedo seedlings. Scientia Horticulturae, 111, 133–139.

    Article  CAS  Google Scholar 

  • Nouriyani, H., Majidi, E., Seyyednejad, S. M., Siadat, S. A., & Naderi, A. (2012). Effect of paclobutrazol under different levels of nitrogen on some physiological traits of two wheat cultivars (Triticum aestivum L.). World Applied Sciences Journal, 16, 1–6.

    CAS  Google Scholar 

  • Pan, S., Rasul, F., Li, W., Tian, H., Mo, Z., Duan, M., et al. (2013). Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Rice, 6, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parvin, S., Javadi, T., & Ghaderi, N. (2015). Proline, protein, RWC and MSI contents affected by paclobutrazol and water deficit treatments in strawberry cv. Paros. Cercetări Agronomice în Moldova, 161, 107–114.

    Google Scholar 

  • Percival, C., & Albalushi, M. (2007). Paclobutrazol-induced drought tolerance in containerized english and evergreen oak. Arboriculture and Urban Forestry, 33, 397–409.

    Google Scholar 

  • Percival, C., & Noviss, K. (2008). Triazole induced drought tolerance in horse chestnut (Aesculus hippocastanum). Tree Physiology, 28, 1685–1692.

    Article  CAS  PubMed  Google Scholar 

  • Pinhero, R. G., & Fletcher, R. A. (1994). PBZ and ancymidol protect corn seedlings from high and low temperature stresses. Plant Physiology, 114, 695–704.

    Article  Google Scholar 

  • Rademacher, W. (1997). Bioregulation of crop plants with inhibitors of gibberellin biosynthesis. Proceedings of Plant Growth Regulation Society of America, 24, 27–31.

    Google Scholar 

  • Rady, M., & Gaballah, S. (2012). Improving barley yield grown under water stress conditions. Research Journal of Recent Sciences, 1, 1–6.

    CAS  Google Scholar 

  • Rahman, H., Khan, M., Hussain, S. I., Mahmood, T., & Shah, A. (1989a). Effect of paclobutrazol on growth and yield of pepper. Pakistan Journal of Agricultural Research, 10, 53–55.

    Google Scholar 

  • Rahman, H., Khan, M., & Khokhar, M. (1989b). Effect of paclobutrazol on growth and yield of tomato. Pakistan Journal of Agricultural Research, 10, 49–51.

    Google Scholar 

  • Rajendra, B., & Jones Jonathan, D. G. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69, 473–488.

    Article  CAS  Google Scholar 

  • Rezazadeh, A., Harkess, R. L., & Guihong, B. (2016). Effects of paclobutrazol and flurprimidol on water stress amelioration in potted red firespike. Hort Technology, 26, 26–29.

    CAS  Google Scholar 

  • Ristic, Z., & Cass, D. D. (1991). Leaf anatomy of Zea mays L. in response to water shortage and high temperature: A comparison of drought resistant and drought sensitive lines. Botanical Gazette, 152, 173–185.

    Article  Google Scholar 

  • Sailerova, E., & Zwiazek, J. J. (1997). Early effect of triadimefon on water relations, sterol composition and plasma membrane ATPase activity in white spruce (Picea gluca) needles. Physiologiae Plantarum, 97, 747–753.

    Article  Google Scholar 

  • Sairam, R. K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 594–597.

    Google Scholar 

  • Sairam, R. K., Deshmukh, P. S., & Shukla, D. S. (1991). Effect of triadimefon and kinetin on moisture stress tolerance in wheat. Indian Journal of Agricultural Sciences, 61, 102–106.

    CAS  Google Scholar 

  • Sairam, R. K., Deshmukh, P. S., & Shukla, D. S. (1995). Effect of triazole-triadimefon on tolerance to moisture stress in wheat. Indian Journal of Agricultural Sciences, 65, 483–489.

    CAS  Google Scholar 

  • Sankar, B., Jaleel, C. A., Manivannan, P., Kishorekumar, A., Somasundaram, R., & Panneeelvam, R. (2007). Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids and Surfaces B: Biointerfaces, 60, 229–235.

    Article  CAS  PubMed  Google Scholar 

  • Sankari, S., Gopi, R., Gomathinayagam, M., Sridharan, R., Somasundaram, R., & Panneerselvam, R. (2006). Responses of triazoles on growth and antioxidant levels in white radish. Indian Journal of Applied and Pure Biology, 21, 77–80.

    CAS  Google Scholar 

  • Setia, R. C., Kaur, P., Setia, N., & Amerada, (1996). Influence of paclobutrazol on growth and development of fruit in Brassica juncea (L.) Czern and Coss. Journal of Plant Growth Regulation, 20, 307–316.

    Article  CAS  Google Scholar 

  • Shahrokhi, M., Tehranifar, A., Hadizadeh, H., & Selahvarzi, Y. (2011). Effect of drought stress and paclobutrazol-treated seeds on physiological response of Festuca arundinacea L. Master and Lolium perenne L. Barrage. Journal of Environmental Sciences, 14, 77–85.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    Article  CAS  Google Scholar 

  • Sherawat, S. K., Daulta, B. S., Dahiya, D. S., & Bhardwaj, R. (1998). Effect of growth retardants on growth, yield and fruit quality in grape (Vitis vinifera L.) cv. ‘Thompson seedless’. International Journal of Tropical Agriculture, 16, 179–184.

    Google Scholar 

  • Smirnoff, N. (1995). Antioxidant systems and plant responses to the environment. In V. Smirnoff (Ed.), Environment and plant metabolism: Flexibility and acclimation. Oxford: Bios Scientific Publishers.

    Google Scholar 

  • Smironoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytolgist, 125, 27–58.

    Article  Google Scholar 

  • Somasundaram, R., Jaleel, C. A., Sindhu, S. A., Azooz, M. M., & Panneerselvam, R. (2009). Role of Paclobutrazol and ABA in drought stress amelioration in Sesamum indicum L. Global Journal of Molecular Sciences, 4, 56–62.

    CAS  Google Scholar 

  • Sopher, C. R., Krol, M., Huner, N. P. A., Moore, A. E., & Fletcher, R. A. (1999). Chloroplastic changes associated with paclobutrazol induced stress protection in maize seedlings. Canadian Journal of Botany, 77, 279–290.

    Article  CAS  Google Scholar 

  • Soumya, P. R. (2014). Role of paclobutrazol in amelioration of water deficit stress in chickpea (Cicer arietinum L.). M.Sc. thesis, ICAR-Indian Agricultural Research Institute, New Delhi.

  • Sreethar, V. M. (1991). Proline accumulation and reduced transpiration in the leaves of triazole treated mulberry plant. Indian Botanical Reporter, 101, 1–5.

    Google Scholar 

  • Srivastava, M., Kishor, A., Dahuja, A., & Sharma, R. R. (2010). Effect of paclobutrazol and salinity on ion leakage, proline content and activities of antioxidant enzymes in mango (Mangifera indica L.). Scientia Horticulturae, 125, 785–788.

    Article  CAS  Google Scholar 

  • Steinitz, B. A., Cohen, A., Goldberg, Z., & Kochba, M. (1991). Precocious gladiolus corm formation in liquid shake cultures. Plant Cell, Tissue and Organ Culture, 26, 63–70.

    Article  CAS  Google Scholar 

  • Still, J. R., & Pill, W. G. (2004). Growth and stress tolerance of tomato seedlings (Lycopersicon esculentum Mill) in response to seed treatment with paclobutrazol. Journal of Horticultural Science and Biotchnology, 79, 197–200.

    Article  CAS  Google Scholar 

  • Synkova, H., & Rulcova, J. (2000). Cytokinins and water stress. Biologia Plantarum, 43, 321–328.

    Article  Google Scholar 

  • Szalai, G., Kellős, T., Galiba, G., & Kocsy, G. (2009). Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. Journal of Plant Growth Regulation, 28, 66–80.

    Article  CAS  Google Scholar 

  • Tekalign, T., Hammes, S., & Robbertse, J. (2005). Paclobutrazol induced leaf stem and root anatomical modifications in potato. Horticultural Science, 40, 1343–1346.

    Google Scholar 

  • Turkan, I., Bor, M., Ozdemir, F., & Koca, H. (2005). Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius Gray and drought sensitive P. vulgaris subjected to poly ethylene glycol mediated water stress. Plant Science, 168, 223–231.

    Article  CAS  Google Scholar 

  • Utrillas, M. J., & Alegre, L. (1997). Impact of water stress on leaf anatomy and ultra structure in Cyanodon dactylon L. International Journal of Plant Science, 158, 313–324.

    Article  Google Scholar 

  • Van den Driessche, R. (1996). Drought resistance and water use efficiency of conifer seedlings treated with paclobutrazol. New Forests, 11, 65–83.

    Article  Google Scholar 

  • Vineeth, T. V., Kumar, P., & Krishna, G. K. (2016). Bioregulators protected photosynthetic machinery by inducing expression of photorespiratory genes under water stress in chickpea. Photosynthetica, 54, 234–242.

    Article  CAS  Google Scholar 

  • Vineeth, T. V., Kumar, P., Yadav, S., & Pal, M. (2015). Optimization of bio-regulators dose based on photosynthetic and yield performance of chickpea (Cicer arietinum L.) genotypes. Indian Journal of Plant Physiology, 20, 177–181.

    Article  CAS  Google Scholar 

  • Wample, R. L., & Culver, E. B. (1983). The influence of paclobutrazol, a new growth regulator on sun flower. Journal of American Society of Horticultural Science, 108, 122–125.

    CAS  Google Scholar 

  • Wang, C. Y., Byun, J. K., & Steffens, G. L. (1985). Controlling plant growth via the gibberellin biosynthesis system: II. Biochemical and physiological alterations in apple seedlings. Physiologia Plantarum, 63, 169–175.

    Article  CAS  Google Scholar 

  • Wang, H. F., & Chen, R. X. (1997). Effect of S-3307 on seedling growth and yield of rape. Plant Physiology, 33, 345–346.

    CAS  Google Scholar 

  • Wang, S. Y., Zuo, L., & Faust, M. (1987). Effect of paclobutrazol on water stress-induced abscisic acid in apple seedling leaves. Plant Physiology, 84, 1051–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson, G. (2001). Soil applied paclobutrazol affects root growth, shoot growth, and water potential of american elm seedlings. Journal of Environmental Horticulture, 19, 119–122.

    CAS  Google Scholar 

  • Williamson, J. G., & Coston, D. C. (1986). Growth responses of peach roots and shoots to soil and foliar applied paclobturazol. Horticultural Science, 21, 1000–1003.

    Google Scholar 

  • Yan, X. H., & Pan, R. Z. (1992). Effects of triadimefon on the growth, photosynthesis and respiration of groundnut seedlings. Oil Seed Crops (China), 4, 57.

    Google Scholar 

  • Yan, W., Zhang, X. X., & Yuan, A. (2011). Effects of two plant growth regulators on the growth and recovery of alfalfa seedlings exposed to aluminum stress. Journal of Shanghai Jiaotong University (Agricultural Science), 29, 75–82.

    Google Scholar 

  • Yaser, F., Ellialtioglu, S., & Yildiz, K. (2008). Effect of salt stress on antioxidant defence systems, lipid peroxidation and chlorophyll content in green bean (Phaseolus vulgaris L.). Russian Journal of Plant Physiology, 55, 1–5.

    Article  Google Scholar 

  • Yuceer, C., Kubiske, M., Harkess, R., & Land, S. (2003). Effects of induction treatments on flowering in Populus deltoids. Tree Physiology, 23, 489–495.

    Article  PubMed  Google Scholar 

  • Zhou, W., & Leul, M. (1999). Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regulation, 27, 99–104.

    Article  CAS  Google Scholar 

  • Zhou, W., & Xi, H. (1993). Effects of mixtalol and paclobutrazol on photosynthesis and yield of rape (Brassica napus). Journal of Plant Growth Regulation, 12, 157–161.

    Article  CAS  Google Scholar 

  • Zhu, L., Welander, M., Peppel, A., & Li, X. (2004). Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Scientia Horticulturae, 99, 133–141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soumya, P.R., Kumar, P. & Pal, M. Paclobutrazol: a novel plant growth regulator and multi-stress ameliorant. Ind J Plant Physiol. 22, 267–278 (2017). https://doi.org/10.1007/s40502-017-0316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0316-x

Keywords

Navigation