Skip to main content
Log in

Clinical Off-Label Use of Deep Transcranial Magnetic Stimulation in Psychiatric Conditions

  • Hot Topic
  • Published:
Current Treatment Options in Psychiatry Aims and scope Submit manuscript

Abstract

Purpose of review

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation approach to psychiatric treatment that is FDA approved for the management of major depressive disorder (MDD) and obsessive compulsive disorder (OCD). Standard TMS appears to exert biological effects by inducing current in the cortex more shallowly than deep TMS (dTMS); it may be that this modality of treatment differs from standard TMS. Given the potential difference in the manner in which dTMS stimulates the targeted brain regions, it is reasonable to review and summarize the various off-label and experimental applications of this variation of TMS.

Recent findings

Deep TMS has demonstrated promise in treating mood disorders including bipolar depression and PTSD, but it is clear that more work is needed to clarify the utility of dTMS compared with rTMS. Future work may help delineate the role dTMS plays in addressing a wide spectrum of psychiatric illnesses. In addition, direct fundamental work is needed to characterize any effectiveness of dTMS in schizophrenia, anxiety, and autism spectrum disorder.

Summary

Overall, neuromodulation holds promise for treating a variety of psychiatric conditions but more extensive works aimed at understanding the mechanisms and applicability are sorely needed. Continued efforts in understanding the unique application of dTMS may pave the way for future methodologies that could enhance treatment options for both mood and thought disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39. https://doi.org/10.1016/j.clinph.2009.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–107. https://doi.org/10.1016/j.clinph.2015.02.001Although an older paper, this manuscript updates and provides clinical guidance on the safe delivery of transcanial stimulation in a variety of settings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fitzgerald PB, Fountain S, Hoy K, Maller J, Enticott P, Laycock R, et al. A comparative study of the effects of repetitive paired transcranial magnetic stimulation on motor cortical excitability. J Neurosci Methods. 2007;165(2):265–9. https://doi.org/10.1016/j.jneumeth.2007.06.002.

    Article  PubMed  Google Scholar 

  4. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96. https://doi.org/10.1016/j.clinph.2006.06.712.

    Article  PubMed  Google Scholar 

  5. Roth Y, Amir A, Levkovitz Y, Zangen A. Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. J Clin Neurophysiol. 2007;24(1):31–8. https://doi.org/10.1097/WNP.0b013e31802fa393.

    Article  PubMed  Google Scholar 

  6. Bersani FS, Minichino A, Enticott PG, Mazzarini L, Khan N, Antonacci G, et al. Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review. Eur Psychiatry. 2013;28(1):30–9. https://doi.org/10.1016/j.eurpsy.2012.02.006.

    Article  CAS  PubMed  Google Scholar 

  7. Carmi L, Alyagon U, Barnea-Ygael N, Zohar J, Dar R, Zangen A. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul. 2018;11(1):158–65. https://doi.org/10.1016/j.brs.2017.09.004.

    Article  PubMed  Google Scholar 

  8. • Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, et al. Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am J Psychiatry. 2019;176(11):931–8. https://doi.org/10.1176/appi.ajp.2019.18101180Although not a specific focus of this paper, this paper initially showed promise for a novel dTMS approach to OCD.

    Article  PubMed  Google Scholar 

  9. Harel EV, Rabany L, Deutsch L, Bloch Y, Zangen A, Levkovitz Y. H-coil repetitive transcranial magnetic stimulation for treatment resistant major depressive disorder: an 18-week continuation safety and feasibility study. World J Biol Psychiatry. 2014;15(4):298–306. https://doi.org/10.3109/15622975.2011.639802.

    Article  PubMed  Google Scholar 

  10. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–403.

    Article  CAS  Google Scholar 

  11. Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science. 1994;263(5151):1287–9.

    Article  CAS  Google Scholar 

  12. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147–50. https://doi.org/10.1038/35018000.

    Article  CAS  PubMed  Google Scholar 

  13. Chen R. Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl. 2000;9:S26–32.

    Article  CAS  Google Scholar 

  14. Bakker N, Shahab S, Giacobbe P, Blumberger DM, Daskalakis ZJ, Kennedy SH, et al. rTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul. 2015;8(2):208–15. https://doi.org/10.1016/j.brs.2014.11.002.

    Article  PubMed  Google Scholar 

  15. Huang YZ, Rothwell JC, Chen RS, Lu CS, Chuang WL. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2011;122(5):1011–8. https://doi.org/10.1016/j.clinph.2010.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eaton H. Electric field induced in a spherical volume conductor from arbitrary coils: application to magnetic stimulation and MEG. Med Biol Eng Comput. 1992;30(4):433–40. https://doi.org/10.1007/BF02446182.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen LG, Roth BJ, Nilsson J, Dang N, Panizza M, Bandinelli S, et al. Effects of coil design on delivery of focal magnetic stimulation Technical considerations. Electroencephalogr Clin Neurophysiol. 1990;75(4):350–7. https://doi.org/10.1016/0013-4694(90)90113-x.

    Article  CAS  PubMed  Google Scholar 

  18. Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimulation of deep brain regions. J Clin Neurophysiol. 2002;19(4):361–70.

    Article  Google Scholar 

  19. Davey KR, Riehl M. Suppressing the surface field during transcranial magnetic stimulation. IEEE Trans Biomed Eng. 2006;53(2):190–4. https://doi.org/10.1109/TBME.2005.862545.

    Article  PubMed  Google Scholar 

  20. Deng ZD, Peterchev AV, Lisanby SH. Coil design considerations for deep-brain transcranial magnetic stimulation (dTMS). Conf Proc IEEE Eng Med Biol Soc. 2008;2008:5675–9. https://doi.org/10.1109/IEMBS.2008.4650502.

    Article  Google Scholar 

  21. Levkovitz Y, Harel EV, Roth Y, Braw Y, Most D, Katz LN, et al. Deep transcranial magnetic stimulation over the prefrontal cortex: evaluation of antidepressant and cognitive effects in depressive patients. Brain Stimul. 2009;2(4):188–200. https://doi.org/10.1016/j.brs.2009.08.002.

    Article  PubMed  Google Scholar 

  22. Enticott PG, Kennedy HA, Zangen A, Fitzgerald PB. Deep repetitive transcranial magnetic stimulation associated with improved social functioning in a young woman with an autism spectrum disorder. J ECT. 2011;27(1):41–3. https://doi.org/10.1097/YCT.0b013e3181f07948.

    Article  PubMed  Google Scholar 

  23. Tendler A, Barnea Ygael N, Roth Y, Zangen A. Deep transcranial magnetic stimulation (dTMS) - beyond depression. Expert Rev Med Devices. 2016;13(10):987–1000. https://doi.org/10.1080/17434440.2016.1233812.

    Article  CAS  PubMed  Google Scholar 

  24. Kessler RC, Birnbaum H, Demler O, Falloon IR, Gagnon E, Guyer M, et al. The prevalence and correlates of nonaffective psychosis in the National Comorbidity Survey Replication (NCS-R). Biol Psychiatry. 2005;58(8):668–76. https://doi.org/10.1016/j.biopsych.2005.04.034.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu EQ, Shi L, Birnbaum H, Hudson T, Kessler R. Annual prevalence of diagnosed schizophrenia in the USA: a claims data analysis approach. Psychol Med. 2006;36(11):1535–40. https://doi.org/10.1017/s0033291706008191.

    Article  PubMed  Google Scholar 

  26. Moreno-Kustner B, Martin C, Pastor L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS One. 2018;13(4):e0195687. https://doi.org/10.1371/journal.pone.0195687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2(5):e141. https://doi.org/10.1371/journal.pmed.0020141.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Saba G, Verdon CM, Kalalou K, Rocamora JF, Dumortier G, Benadhira R, et al. Transcranial magnetic stimulation in the treatment of schizophrenic symptoms: a double blind sham controlled study. J Psychiatr Res. 2006;40(2):147–52. https://doi.org/10.1016/j.jpsychires.2005.02.008.

    Article  CAS  PubMed  Google Scholar 

  29. Rabany L, Deutsch L, Levkovitz Y. Double-blind, randomized sham controlled study of deep-TMS add-on treatment for negative symptoms and cognitive deficits in schizophrenia. J Psychopharmacol. 2014;28(7):686–90. https://doi.org/10.1177/0269881114533600.

    Article  CAS  PubMed  Google Scholar 

  30. Reid MA, Stoeckel LE, White DM, Avsar KB, Bolding MS, Akella NS, et al. Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biol Psychiatry. 2010;68(7):625–33. https://doi.org/10.1016/j.biopsych.2010.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Andreasen NC, O'Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL, et al. Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naive patients. Lancet. 1997;349(9067):1730–4. https://doi.org/10.1016/s0140-6736(96)08258-x.

    Article  CAS  PubMed  Google Scholar 

  32. Brunelin J, Poulet E, Bediou B, Kallel L, Dalery J, D'Amato T, et al. Low frequency repetitive transcranial magnetic stimulation improves source monitoring deficit in hallucinating patients with schizophrenia. Schizophr Res. 2006;81(1):41–5. https://doi.org/10.1016/j.schres.2005.10.009.

    Article  PubMed  Google Scholar 

  33. Poulet E, Brunelin J, Bediou B, Bation R, Forgeard L, Dalery J, et al. Slow transcranial magnetic stimulation can rapidly reduce resistant auditory hallucinations in schizophrenia. Biol Psychiatry. 2005;57(2):188–91. https://doi.org/10.1016/j.biopsych.2004.10.007.

    Article  PubMed  Google Scholar 

  34. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, et al. Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry. 2003;60(1):49–56. https://doi.org/10.1001/archpsyc.60.1.49.

    Article  PubMed  Google Scholar 

  35. Levkovitz Y, Rabany L, Harel EV, Zangen A. Deep transcranial magnetic stimulation add-on for treatment of negative symptoms and cognitive deficits of schizophrenia: a feasibility study. Int J Neuropsychopharmacol. 2011;14(7):991–6. https://doi.org/10.1017/S1461145711000642.

    Article  PubMed  Google Scholar 

  36. Linsambarth S, Jeria A, Avirame K, Todder D, Riquelme R, Stehberg J. Deep transcranial magnetic stimulation for the treatment of negative symptoms in schizophrenia: beyond an antidepressant effect. J ECT. 2019;35(4):e46–54. https://doi.org/10.1097/YCT.0000000000000592.

    Article  PubMed  Google Scholar 

  37. Rosenberg O, Roth Y, Kotler M, Zangen A, Dannon P. Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study. Ann General Psychiatry. 2011;10(1):3. https://doi.org/10.1186/1744-859X-10-3.

    Article  Google Scholar 

  38. Rosenberg O, Gersner R, Klein LD, Kotler M, Zangen A, Dannon P. Deep transcranial magnetic stimulation add-on for the treatment of auditory hallucinations: a double-blind study. Ann General Psychiatry. 2012;11:13. https://doi.org/10.1186/1744-859X-11-13.

    Article  Google Scholar 

  39. Ferrari AJ, Stockings E, Khoo JP, Erskine HE, Degenhardt L, Vos T, et al. The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord. 2016;18(5):440–50. https://doi.org/10.1111/bdi.12423.

    Article  Google Scholar 

  40. Nahas Z, Kozel FA, Li X, Anderson B, George MS. Left prefrontal transcranial magnetic stimulation (TMS) treatment of depression in bipolar affective disorder: a pilot study of acute safety and efficacy. Bipolar Disord. 2003;5(1):40–7. https://doi.org/10.1034/j.1399-5618.2003.00011.x.

    Article  PubMed  Google Scholar 

  41. Dell'Osso B, Mundo E, D'Urso N, Pozzoli S, Buoli M, Ciabatti M, et al. Augmentative repetitive navigated transcranial magnetic stimulation (rTMS) in drug-resistant bipolar depression. Bipolar Disord. 2009;11(1):76–81. https://doi.org/10.1111/j.1399-5618.2008.00651.x.

    Article  PubMed  Google Scholar 

  42. Fitzgerald PB, Hoy KE, Elliot D, McQueen S, Wambeek LE, Daskalakis ZJ. A negative double-blind controlled trial of sequential bilateral rTMS in the treatment of bipolar depression. J Affect Disord. 2016;198:158–62. https://doi.org/10.1016/j.jad.2016.03.052.

    Article  PubMed  Google Scholar 

  43. Myczkowski ML, Fernandes A, Moreno M, Valiengo L, Lafer B, Moreno RA, et al. Cognitive outcomes of TMS treatment in bipolar depression: safety data from a randomized controlled trial. J Affect Disord. 2018;235:20–6. https://doi.org/10.1016/j.jad.2018.04.022.

    Article  PubMed  Google Scholar 

  44. • Tavares DF, Myczkowski ML, Alberto RL, Valiengo L, Rios RM, Gordon P, et al. Treatment of bipolar depression with deep TMS: results from a double-blind, randomized, parallel group, sham-controlled clinical trial. Neuropsychopharmacology. 2017;42(13):2593–601. https://doi.org/10.1038/npp.2017.26A comparatively large, recent study supporting the use of transcranial magnetic stimulation in the mangement of bipolar depression.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35(1):217–38. https://doi.org/10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  46. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction (Abingdon, England). 2007;102(Suppl 1):16–32. https://doi.org/10.1111/j.1360-0443.2006.01782.x.

    Article  Google Scholar 

  47. Luijten M, Schellekens AF, Kuhn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction : an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiatry. 2017;74(4):387–98. https://doi.org/10.1001/jamapsychiatry.2016.3084.

    Article  PubMed  Google Scholar 

  48. Feil J, Zangen A. Brain stimulation in the study and treatment of addiction. Neurosci Biobehav Rev. 2010;34(4):559–74. https://doi.org/10.1016/j.neubiorev.2009.11.006.

    Article  PubMed  Google Scholar 

  49. Garavan H, Hester R. The role of cognitive control in cocaine dependence. Neuropsychol Rev. 2007;17(3):337–45. https://doi.org/10.1007/s11065-007-9034-x.

    Article  PubMed  Google Scholar 

  50. Hester R, Garavan H. Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci. 2004;24(49):11017–22. https://doi.org/10.1523/JNEUROSCI.3321-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kedzior KK, Gerkensmeier I, Schuchinsky M. Can deep transcranial magnetic stimulation (DTMS) be used to treat substance use disorders (SUD)? A systematic review. BMC Psychiatry. 2018;18(1):137. https://doi.org/10.1186/s12888-018-1704-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Dinur-Klein L, Dannon P, Hadar A, Rosenberg O, Roth Y, Kotler M, et al. Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biol Psychiatry. 2014;76(9):742–9. https://doi.org/10.1016/j.biopsych.2014.05.020A relatively early paper, arguing that transcranial magnetic stimulation targeting a region critical for interoception may play a role in stimulant use reduction.

    Article  PubMed  Google Scholar 

  53. Martinez D, Urban N, Grassetti A, Chang D, Hu MC, Zangen A, et al. Transcranial magnetic stimulation of medial prefrontal and cingulate cortices reduces cocaine self-administration: a pilot study. Front Psychiatry. 2018;9:80. https://doi.org/10.3389/fpsyt.2018.00080.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bolloni C, Panella R, Pedetti M, Frascella AG, Gambelunghe C, Piccoli T, et al. Bilateral transcranial magnetic stimulation of the prefrontal cortex reduces cocaine intake: a pilot study. Front Psychiatry. 2016;7:133. https://doi.org/10.3389/fpsyt.2016.00133.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rapinesi C, Del Casale A, Di Pietro S, Ferri VR, Piacentino D, Sani G, et al. Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex reduces cocaine craving in patients with cocaine use disorder. Neurosci Lett. 2016;629:43–7. https://doi.org/10.1016/j.neulet.2016.06.049.

    Article  CAS  PubMed  Google Scholar 

  56. • Addolorato G, Antonelli M, Cocciolillo F, Vassallo GA, Tarli C, Sestito L, et al. Deep transcranial magnetic stimulation of the dorsolateral prefrontal cortex in alcohol use disorder patients: effects on dopamine transporter availability and alcohol intake. Eur Neuropsychopharmacol : the journal of the European College of Neuropsychopharmacology. 2017;27(5):450–61 Recent analysis of deep transcranial magnetic stimulation that attempts to address the underlying neurobiology of addiction.

    Article  CAS  Google Scholar 

  57. Ceccanti M, Inghilleri M, Attilia ML, Raccah R, Fiore M, Zangen A, et al. Deep TMS on alcoholics: effects on cortisolemia and dopamine pathway modulation. A pilot study. Can J Physiol Pharmacol. 2015;93(4):283–90. https://doi.org/10.1139/cjpp-2014-0188.

    Article  CAS  PubMed  Google Scholar 

  58. Girardi P, Rapinesi C, Chiarotti F, Kotzalidis GD, Piacentino D, Serata D, et al. Add-on deep transcranial magnetic stimulation (dTMS) in patients with dysthymic disorder comorbid with alcohol use disorder: a comparison with standard treatment. World J Biol Psychiatry. 2015;16(1):66–73. https://doi.org/10.3109/15622975.2014.925583.

    Article  PubMed  Google Scholar 

  59. Rapinesi C, Curto M, Kotzalidis GD, Del Casale A, Serata D, Ferri VR, et al. Antidepressant effectiveness of deep transcranial magnetic stimulation (dTMS) in patients with major depressive disorder (MDD) with or without alcohol use disorders (AUDs): a 6-month, open label, follow-up study. J Affect Disord. 2015;174:57–63. https://doi.org/10.1016/j.jad.2014.11.015.

    Article  PubMed  Google Scholar 

  60. Li X, Malcolm RJ, Huebner K, Hanlon CA, Taylor JJ, Brady KT, et al. Low frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex transiently increases cue-induced craving for methamphetamine: a preliminary study. Drug Alcohol Depend. 2013;133(2):641–6. https://doi.org/10.1016/j.drugalcdep.2013.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vlachos A, Muller-Dahlhaus F, Rosskopp J, Lenz M, Ziemann U, Deller T. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci. 2012;32(48):17514–23. https://doi.org/10.1523/JNEUROSCI.0409-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. • Su H, Zhong N, Gan H, Wang J, Han H, Chen T, et al. High frequency repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex for methamphetamine use disorders: a randomised clinical trial. Drug Alcohol Depend. 2017;175:84–91. https://doi.org/10.1016/j.drugalcdep.2017.01.037An early clinical trial suggesting that transcranial magnetic stimulation may be effective for addressing methamphetamine use disorder.

    Article  CAS  PubMed  Google Scholar 

  63. Liang Y, Wang L, Yuan TF. Targeting withdrawal symptoms in men addicted to methamphetamine with transcranial magnetic stimulation: a randomized clinical trial. JAMA Psychiatry. 2018;75(11):1199–201. https://doi.org/10.1001/jamapsychiatry.2018.2383.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liu Q, Shen Y, Cao X, Li Y, Chen Y, Yang W, et al. Either at left or right, both high and low frequency rTMS of dorsolateral prefrontal cortex decreases cue induced craving for methamphetamine. Am J Addict. 2017;26(8):776–9. https://doi.org/10.1111/ajad.12638.

    Article  PubMed  Google Scholar 

  65. Kedzior KK, Gellersen HM, Roth Y, Zangen A. Acute reduction in anxiety after deep transcranial magnetic stimulation (DTMS) in unipolar major depression- a systematic review and meta-analysis. Psychiatry Res. 2015;230(3):971–4. https://doi.org/10.1016/j.psychres.2015.11.032.

    Article  PubMed  Google Scholar 

  66. Isserles M, Shalev AY, Roth Y, Peri T, Kutz I, Zlotnick E, et al. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder--a pilot study. Brain Stimul. 2013;6(3):377–83. https://doi.org/10.1016/j.brs.2012.07.008.

    Article  PubMed  Google Scholar 

  67. LeClerc S, Easley D. Pharmacological therapies for autism spectrum disorder: a review. P T. 2015;40(6):389–97.

    PubMed  PubMed Central  Google Scholar 

  68. Enticott PG, Fitzgibbon BM, Kennedy HA, Arnold SL, Elliot D, Peachey A, et al. A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder. Brain Stimul. 2014;7(2):206–11. https://doi.org/10.1016/j.brs.2013.10.004.

    Article  PubMed  Google Scholar 

  69. Avirame K, Stehberg J, Todder D. Enhanced cognition and emotional recognition, and reduced obsessive compulsive symptoms in two adults with high-functioning autism as a result of deep transcranial magnetic stimulation (dTMS): a case report. Neurocase. 2017;23(3–4):187–92. https://doi.org/10.1080/13554794.2017.1361451.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Medical Research Foundation of Oregon under grant APSYCO236 (BJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon J. Cornejo.

Ethics declarations

Conflict of interest

The authors who are currently part-time employees of Achieve TMS use Brainsway dTMS equipment. They otherwise have no interests or connections to Brainsway whatsoever.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornejo, B.J., McCready, H., Rabin, S. et al. Clinical Off-Label Use of Deep Transcranial Magnetic Stimulation in Psychiatric Conditions. Curr Treat Options Psych 7, 576–588 (2020). https://doi.org/10.1007/s40501-020-00230-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40501-020-00230-y

Keywords

Navigation