Skip to main content
Log in

Molecular links between mitochondrial dysfunctions and schizophrenia

  • Minireview
  • Published:
Molecules and Cells

Abstract

Schizophrenia is a complex neuropsychiatric disorder with both neurochemical and neurodevelopmental components in the pathogenesis. Growing pieces of evidence indicate that schizophrenia has pathological components that can be attributable to the abnormalities of mitochondrial function, which is supported by the recent finding suggesting mitochondrial roles for Disrupted-in-Schizophrenia 1 (DISC1). In this minireview, we briefly summarize the current understanding of the molecular links between mitochondrial dysfunctions and the pathogenesis of schizophrenia, covering recent findings from human genetics, functional genomics, proteomics, and molecular and cell biological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akyol, O., Yanik, M., Elyas, H., Namli, M., Canatan, H., Akin, H., Yuce, H., Yilmaz, H.R., Tutkun, H., Sogut, S., et al. (2005). Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 29, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Altar, C.A., Jurata, L.W., Charles, V., Lemire, A., Liu, P., Bukhman, Y., Young, T.A., Bullard, J., Yokoe, H., Webster, M.J., et al. (2005). Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol. Psychiatry 58, 85–96.

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (2000). Diagnostic criteria from DSM-IV-TR (Washington, D.C., American Psychiatric Association).

    Google Scholar 

  • Arion, D., Unger, T., Lewis, D.A., Levitt, P., and Mirnics, K. (2007). Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol. Psychiatry 62, 711–721.

    Article  PubMed  CAS  Google Scholar 

  • Bae, Y.S., Oh, H., Rhee, S.G., and Yoo, Y.D. (2011). Regulation of reactive oxygen species generation in cell signaling. Mol. Cells 32, 491–509.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar, D., and Laifenfeld, D. (2004). Mitochondria, synaptic plasticity, and schizophrenia. Int. Rev. Neurobiol. 59, 273–296.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar, D., and Karry, R. (2008). Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3, e3676.

    Article  PubMed  Google Scholar 

  • Ben-Shachar, D., Bonne, O., Chisin, R., Klein, E., Lester, H., Aharon-Peretz, J., Yona, I., and Freedman, N. (2007). Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: A FDG-PET study. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 807–813.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar, D., Nadri, C., Karry, R., and Agam, G. (2009). Mitochondrial complex I subunits are altered in rats with neonatal ventral hippocampal damage but not in rats exposed to oxygen restriction at neonatal age. J. Mol. Neurosci. 38, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Blass, J.P. (2002). Glucose/mitochondria in neurological conditions. Int. Rev. Neurobiol. 51, 325–376.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, N.J., Schurov, I., Camargo, L.M., Handford, E.J., Duran-Jimeniz, B., Hunt, P., Millar, J.K., Porteous, D.J., Shearman, M.S., and Whiting, P.J. (2005). Subcellular targeting of DISC1 is dependent on a domain independent from the Nudel binding site. Mol. Cell. Neurosci. 28, 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, N.J., Millar, J.K., Korth, C., Sive, H., Singh, K.K., and Sawa, A. (2009). Understanding the role of DISC1 in psychiatric disease and during normal development. J. Neurosci. 29, 12768–12775.

    Article  PubMed  CAS  Google Scholar 

  • Brenner-Lavie, H., Klein, E., Zuk, R., Gazawi, H., Ljubuncic, P., and Ben-Shachar, D. (2008). Dopamine modulates mitochondrial function in viable SH-SY5Y cells possibly via its interaction with complex I: relevance to dopamine pathology in schizophrenia. Biochim. Biophys. Acta 1777, 173–185.

    Article  PubMed  CAS  Google Scholar 

  • Brenner-Lavie, H., Klein, E., and Ben-Shachar, D. (2009). Mitochondrial complex I as a novel target for intraneuronal DA: modulation of respiration in intact cells. Biochem. Pharmacol. 78, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Burdick, K.E., Kamiya, A., Hodgkinson, C.A., Lencz, T., DeRosse, P., Ishizuka, K., Elashvili, S., Arai, H., Goldman, D., Sawa, A., et al. (2008). Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum. Mol. Genet. 17, 2462–2473.

    Article  PubMed  CAS  Google Scholar 

  • Chan, D.C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241–1252.

    Article  PubMed  CAS  Google Scholar 

  • Chubb, J.E., Bradshaw, N.J., Soares, D.C., Porteous, D.J., and Millar, J.K. (2008). The DISC locus in psychiatric illness. Mol. Psychiatry 13, 36–64.

    Article  PubMed  CAS  Google Scholar 

  • Doi, N., Hoshi, Y., Itokawa, M., Usui, C., Yoshikawa, T., and Tachikawa, H. (2009). Persistence criteria for susceptibility genes for schizophrenia: a discussion from an evolutionary viewpoint. PLoS One 4, e7799.

    Article  PubMed  Google Scholar 

  • Eyles, D., Almeras, L., Benech, P., Patatian, A., Mackay-Sim, A., McGrath, J., and Feron, F. (2007). Developmental vitamin D deficiency alters the expression of genes encoding mitochondrial, cytoskeletal and synaptic proteins in the adult rat brain. J. Steroid Biochem. Mol. Biol. 103, 538–545.

    Article  PubMed  CAS  Google Scholar 

  • Frey, B.N., Valvassori, S.S., Gomes, K.M., Martins, M.R., Dal-Pizzol, F., Kapczinski, F., and Quevedo, J. (2006). Increased oxidative stress in submitochondrial particles after chronic amphetamine exposure. Brain Res. 1097, 224–229.

    Article  PubMed  CAS  Google Scholar 

  • Hall, M.H., Rijsdijk, F., Picchioni, M., Schulze, K., Ettinger, U., Toulopoulou, T., Bramon, E., Murray, R.M., and Sham, P. (2007). Substantial shared genetic influences on schizophrenia and event-related potentials. Am. J. Psychiatry 164, 804–812.

    Article  PubMed  Google Scholar 

  • Horvath, S., Janka, Z., and Mirnics, K. (2011). Analyzing schizophrenia by DNA microarrays. Biol. Psychiatry 69, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto, K., Bundo, M., and Kato, T. (2005). Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by largescale DNA microarray analysis. Hum. Mol. Genet. 14, 241–253.

    Article  PubMed  CAS  Google Scholar 

  • Iwazaki, T., McGregor, I.S., and Matsumoto, I. (2008). Protein expression profile in the amygdala of rats with methamphetamine-induced behavioral sensitization. Neurosci. Lett. 435, 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Ji, B., La, Y., Gao, L., Zhu, H., Tian, N., Zhang, M., Yang, Y., Zhao, X., Tang, R., Ma, G., et al. (2009). A comparative proteomics analysis of rat mitochondria from the cerebral cortex and hippocampus in response to antipsychotic medications. J. Proteome Res. 8, 3633–3641.

    Article  PubMed  CAS  Google Scholar 

  • Karry, R., Klein, E., and Ben Shachar, D. (2004). Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol. Psychiatry 55, 676–684.

    Article  PubMed  CAS  Google Scholar 

  • Klushnik, T.P., Spunde, A., Yakovlev, A.G., Khuchua, Z.A., Saks, V.A., and Vartanyan, M.E. (1991). Intracellular alterations of the creatine kinase isoforms in brains of schizophrenic patients. Mol. Chem. Neuropathol. 15, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Kolomeets, N.S., and Uranova, N.A. (1997). [Synaptic contacts in schizophrenia: study with immunocytochemical identification of dopaminergic neurons]. Zh. Nevrol. Psikhiatr. Im. S S Korsakova 97, 39–43.

    PubMed  CAS  Google Scholar 

  • Kolomeets, N.S., and Uranova, N. (2010). Ultrastructural abnormalities of astrocytes in the hippocampus in schizophrenia and duration of illness: a postortem morphometric study. World J. Biol. Psychiatry 11, 282–292.

    Article  PubMed  Google Scholar 

  • Konradi, C., Sillivan, S.E., and Clay, H.B. (2012). Mitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosis. Neurobiol. Dis. 45, 37–47.

    Article  PubMed  CAS  Google Scholar 

  • Kung, L., and Roberts, R.C. (1999). Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 31, 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Malaspina, D., Friedman, J.H., Kaufmann, C., Bruder, G., Amador, X., Strauss, D., Clark, S., Yale, S., Lukens, E., Thorning, H., et al. (1998). Psychobiological heterogeneity of familial and sporadic schizophrenia. Biol. Psychiatry 43, 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Mao, Y., Ge, X., Frank, C.L., Madison, J.M., Koehler, A.N., Doud, M.K., Tassa, C., Berry, E.M., Soda, T., Singh, K.K., et al. (2009). Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136, 1017–1031.

    Article  PubMed  CAS  Google Scholar 

  • Martorell, L., Segues, T., Folch, G., Valero, J., Joven, J., Labad, A., and Vilella, E. (2006). New variants in the mitochondrial genomes of schizophrenic patients. Eur. J. Hum. Genet. 14, 520–528.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M.P., Gleichmann, M., and Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748–766.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, I., Zierz, S., and Moller, H. (2001). Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr. Res. 48, 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Middleton, F.A., Mirnics, K., Pierri, J.N., Lewis, D.A., and Levitt, P. (2002). Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J. Neurosci. 22, 2718–2729.

    PubMed  CAS  Google Scholar 

  • Millar, J.K., Wilson-Annan, J.C., Anderson, S., Christie, S., Taylor, M.S., Semple, C.A., Devon, R.S., St Clair, D.M., Muir, W.J., Blackwood, D.H., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423.

    Article  PubMed  CAS  Google Scholar 

  • Millar, J.K., Christie, S., and Porteous, D.J. (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochem. Biophys. Res. Commun. 311, 1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Millar, J.K., James, R., Christie, S., and Porteous, D.J. (2005a). Disrupted in schizophrenia 1 (DISC1): subcellular targeting and induction of ring mitochondria. Mol. Cell. Neurosci. 30, 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Millar, J.K., Pickard, B.S., Mackie, S., James, R., Christie, S., Buchanan, S.R., Malloy, M.P., Chubb, J.E., Huston, E., Baillie, G.S., et al. (2005b). DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310, 1187–1191.

    Article  PubMed  CAS  Google Scholar 

  • Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A., and Levitt, P. (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Mun, J.Y., Lee, T.H., Kim, J.H., Yoo, B.H., Bahk, Y.Y., Koo, H.S., and Han, S.S. (2010). Caenorhabditis elegans mitofilin homologs control the morphology of mitochondrial cristae and influence reproduction and physiology. J. Cell Physiol. 224, 748–756.

    Article  PubMed  CAS  Google Scholar 

  • Munakata, K., Iwamoto, K., Bundo, M., and Kato, T. (2005). Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol. Psychiatry 57, 525–532.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.U., Jeong, J., Lee, H., Mun, J.Y., Kim, J.H., Lee, J.S., Nguyen, M.D., Han, S.S., Suh, P.G., and Park, S.K. (2010). Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc. Natl. Acad. Sci. USA 107, 17785–17790.

    Article  PubMed  CAS  Google Scholar 

  • Prabakaran, S., Swatton, J.E., Ryan, M.M., Huffaker, S.J., Huang, J.T., Griffin, J.L., Wayland, M., Freeman, T., Dudbridge, F., Lilley, K.S., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9, 684–697, 643.

    Article  PubMed  CAS  Google Scholar 

  • Prayson, R.A., and Wang, N. (1998). Mitochondrial myopathy, ence-phalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome: an autopsy report. Arch. Pathol. Lab. Med. 122, 978–981.

    PubMed  CAS  Google Scholar 

  • Regenold, W.T., Phatak, P., Marano, C.M., Sassan, A., Conley, R.R., and Kling, M.A. (2009). Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol. Psychiatry 65, 489–494.

    Article  PubMed  CAS  Google Scholar 

  • Rollins, B., Martin, M.V., Sequeira, P.A., Moon, E.A., Morgan, L.Z., Watson, S.J., Schatzberg, A., Akil, H., Myers, R.M., Jones, E.G., et al. (2009). Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS One 4, e4913.

    Article  PubMed  Google Scholar 

  • Rosenfeld, M., Brenner-Lavie, H., Ari, S.G., Kavushansky, A., and Ben-Shachar, D. (2011). Perturbation in mitochondrial network dynamics and in complex I dependent cellular respiration in schizophrenia. Biol. Psychiatry 69, 980–988.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, M.N., Carbone, M., Mostocotto, C., Mancone, C., Tripodi, M., Maione, R., and Amati, P. (2009). Mitochondrial localization of PARP-1 requires interaction with mitofilin and is involved in the maintenance of mitochondrial DNA integrity. J. Biol. Chem. 284, 31616–31624.

    Article  PubMed  CAS  Google Scholar 

  • Seybolt, S.E. (2010). Is it time to reassess alpha lipoic acid and niacinamide therapy in schizophrenia? Med. Hypotheses 75, 572–575.

    Article  PubMed  CAS  Google Scholar 

  • Shao, L., Martin, M.V., Watson, S.J., Schatzberg, A., Akil, H., Myers, R.M., Jones, E.G., Bunney, W.E., and Vawter, M.P. (2008). Mito-chondrial involvement in psychiatric disorders. Ann. Med. 40, 281–295.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, S.M., Lahti, A.C., Conley, R.R., and Roberts, R.C. (2011). Mitochondria in the striatum of subjects with schizophrenia: relationship to treatment response. Synapse 65, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, K.E., Friston, K.J., and Frith, C.D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr. Bull. 35, 509–527.

    Article  PubMed  Google Scholar 

  • Suzuki, T., Koizumi, J., Shiraishi, H., Ishikawa, N., Ofuku, K., Sasaki, M., Hori, T., Ohkoshi, N., and Anno, I. (1990). Mitochondrial encephalomyopathy (MELAS) with mental disorder. CT, MRI and SPECT findings. Neuroradiology 32, 74–76.

    CAS  Google Scholar 

  • Swerdlow, R.H., Binder, D., and Parker, W.D. (1999). Risk factors for schizophrenia. N Engl. J. Med. 341, 371–372; author reply 372.

    PubMed  CAS  Google Scholar 

  • Treasaden, I.H., and Puri, B.K. (2008). Cerebral spectroscopic and oxidative stress studies in patients with schizophrenia who have dangerously violently offended. BMC Psychiatry 8Suppl 1, S7.

    Article  PubMed  Google Scholar 

  • Ueno, H., Nishigaki, Y., Kong, Q.P., Fuku, N., Kojima, S., Iwata, N., Ozaki, N., and Tanaka, M. (2009). Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia. Mitochondrion 9, 385–393.

    Article  PubMed  CAS  Google Scholar 

  • Uranova, N.A. (1988). Structural changes in the neuropil of the frontal cortex in schizophrenia. Zh. Nevropatol. Psikhiatr. Im. S S Korsakova 88, 52–58.

    PubMed  CAS  Google Scholar 

  • Uranova, N.A., Orlovskaia, D.D., Vikhreva, O.V., Zimina, I.S., and Rakhmanova, V.I. (2001). Morphometric study of ultrastructural changes in oligodendroglial cells in the postmortem brain in endogenous psychoses. Vestn. Ross. Akad. Med. Nauk 42–48.

  • Uranova, N., Bonartsev, P., Brusov, O., Morozova, M., Rachmanova, V., and Orlovskaya, D. (2007). The ultrastructure of lymphocytes in schizophrenia. World J. Biol. Psychiatry 8, 30–37.

    Article  PubMed  Google Scholar 

  • Yao, J.K., Reddy, R.D., and van Kammen, D.P. (2001). Oxidative damage and schizophrenia: an overview of the evidence and its therapeutic implications. CNS Drugs 15, 287–310.

    Article  PubMed  CAS  Google Scholar 

  • Youdim, M.B., and Holzbauer, M. (1976). Physiological and pathological changes in tissue monoamine oxidase activity. J. Neural. Transm. 38, 193–229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ki Park.

About this article

Cite this article

Park, C., Park, S.K. Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells 33, 105–110 (2012). https://doi.org/10.1007/s10059-012-2284-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-2284-3

Keywords

Navigation