Skip to main content
Log in

State of the art in finite element approaches for milling process: a review

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

Over a century, metal cutting has been observed as a vital process in the domain of manufacturing. Among the numerous available metal-cutting processes, milling has been considered as one of the most employable processes to machine a variety of engineering materials productively. In the milling process, material removal occurs when the workpiece is fed against a rotating tool with multiple cutting edges. In order to maximize the profitability of metal cutting operations, it is essential that the various input and output variable relationships are analyzed and optimized. The experimental method of studying milling processes is costly and time demanding, particularly when a large variety of elements such as cutting tool shape, materials, cutting conditions, and so on, are included. Due to these issues, other alternatives emerged in the form of mathematical simulations that employ numerical methods. The finite element approaches have well-proven to be the most practical and commonly utilized numerical methods. The finite element model (FEM) can be used to determine the various physical interactions occurring during the machining process along with the prediction of various milling characteristics, such as cutting forces, cutting temperature, stresses, etc., with the help of milling inputs. In the present article, various research studies in the broad milling process domain practiced with numerous finite element approaches have been critically reviewed and reported. It further highlights the several experimental and finite element approaches-based research studies that attempted to analyze and optimize the overall performance of the different milling processes. In recent years, various investigators have explored numerous ways to enhance milling performance by probing the different factors that influence the quality attributes. Some of the studies have also been found to be focused on the economic impacts of milling and various process inputs that affect milling performance. Furthermore, various milling factors’ impact on the performance characteristics are presented and critically discussed. The issues related to the recent improvements in tool-work interaction modeling, experimental techniques for acquiring various milling performance measures, and the aspects of turn and micro-milling with finite element-based modeling have been further highlighted. Among the various available classifications in the milling process as employed in industries, face milling is more strongly established compared to other versions such as end milling, helical milling, gear milling, etc. The final section of this research article explores the various research aspects and outlines future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Aachen R. RWTH edition (1876) The University of Manchester. Nature 14(350):225–226. https://doi.org/10.1038/014225a0

  2. McDougall D (1966) Machine tool output, 1861–1910. In Output, employment, and productivity in the United States after 1800 (pp. 497-519). NBER

  3. De Nicola L (2013) From mechanical arts to the philosophy of technology. Econ Innov New Technol 22(7):726–750

    Article  Google Scholar 

  4. Raicu L, Marin D (2008) Design aspects in machine tools evolution. J Proc Int Conf Manuf Syst 3:59–64

    Google Scholar 

  5. Balázs BZ, Geier N, Takács M et al (2021) A review on micro-milling: recent advances and future trends. Int J Adv Manuf Technol 112(3/4):655–684

    Article  Google Scholar 

  6. Friedrich CR, Vasile MJ (1996) Development of the micromilling process for high-aspect-ratio microstructures. J Microelectromech Syst 5(1):33–38

    Article  Google Scholar 

  7. Rosli AM, Jamaludin AS, Nizar M et al (2020) State of the art on micromilling hard to cut material. Proc Mech Eng Res Day 2020:99–101

    Google Scholar 

  8. Mamedov A (2021) Micro milling process modeling: a review. Manuf Rev 8(3):1–23

    MathSciNet  Google Scholar 

  9. Altan T (2000) Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling. Int J Mach Tool Manuf 40(5):713–738

    Article  Google Scholar 

  10. Li B, Zhang S, Zhang Q et al (2019) Simulated and experimental analysis on serrated chip formation for hard milling process. J Manuf Process 44:337–348

    Article  Google Scholar 

  11. Li BX, Zhang S, Zhang J (2019) Plastic deformation and grain refinement in surface layer induced by thermo-mechanical loads for hard milling process. Proc Inst Mech Eng Part B J Eng Manuf 233(10):2033–2046

    Article  Google Scholar 

  12. Marimuthu KP, Prsada HP, Kumar CSC (2019) Finite element modelling to predict machining induced residual stresses in the end milling of hard to machine Ti6Al4V alloy. Period Eng Nat Sci 7(1):1–11

    Google Scholar 

  13. Bergmann B, Denkena B, Ko J (2015) Development of cutting edge geometries for hard milling operations. CIRP J Manuf Sci Technol 8:43–52

    Article  Google Scholar 

  14. Gopikrishnan P, Akbar A, Asokan A et al (2018) Numerical modelling and optimization of surface finish during peripheral milling of AISI 4340 steel using RSM. Mater Today Proc 5(11):24612–24621

    Article  Google Scholar 

  15. Çiçek A, Kara F, Kivak T et al (2013) Evaluation of machinability of hardened and cryo-treated AISI H13 hot work tool steel with ceramic inserts. Int J Refract Met Hard Mater 41:461–469

    Article  Google Scholar 

  16. Ali MH, Khidhir BA, Ansari MNM et al (2013) FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy. HBRC J 9(3):263–269

    Article  Google Scholar 

  17. Silva RBD, Machado ÁR, Ezugwu EO et al (2007) Increasing productivity in high speed machining of Ti-6Al-4V alloy under high pressure coolant supply. Int J Mach Mach Mater 2(2):222–232

    Google Scholar 

  18. Huang X, Xu J, Chen M et al (2020) Finite element modeling of high-speed milling 7050-T7451 alloys. Procedia Manuf 43:471–478

    Article  Google Scholar 

  19. Guo C, Zhang C, Bai H et al (2019) Influence of milling parameters on milling performance of 300 M ultra high strength steel. IOP Conf Ser Mater Sci Eng 493(1):012065. https://doi.org/10.1088/1757-899X/493/1/012065

    Article  Google Scholar 

  20. Li A, Zhao J, Luo H et al (2012) Progressive tool failure in high-speed dry milling of Ti-6Al-4V alloy with coated carbide tools. Int J Adv Manuf Technol 58(5/8):465–478

    Article  Google Scholar 

  21. Daymi A, Boujelbene M, Ben AA et al (2011) Surface integrity in high speed end milling of titanium alloy Ti-6Al-4V. Mater Sci Technol 27(1):387–394

    Article  Google Scholar 

  22. Chen CH, Wang YC, Lee BY (2013) The effect of surface roughness of end-mills on optimal cutting performance for high-speed machining. J Mech Eng 59(2):124–134

    Article  Google Scholar 

  23. Hall S, Loukaides E, Newman ST et al (2020) Computational and experimental investigation of cutting tool geometry in machining titanium Ti-6Al-4V. Procedia CIRP 86:139–144

    Article  Google Scholar 

  24. Pelayo GU (2019) Modelling of static and dynamic milling forces in inclined operations with circle-segment end mills. Precis Eng 56:123–135

    Article  Google Scholar 

  25. Meng L, Zhang C, Ren Y et al (2017) Study on the power consumption of different milling modes and number of inserts in face milling processes. In: IEEE international conference on automation science and engineering, pp 1475–1480

  26. De Geare J (2015) Milling operations. Guid to Oilw Fish Oper. https://doi.org/10.1016/b978-0-12-420004-3.00012-5

    Article  Google Scholar 

  27. Liu Y, Zhou W, Li X et al (2020) Experimental investigations on cutting force and temperature in milling process of copper foam with high porosity. Int J Adv Manuf Technol 108(3):759–767

    Article  Google Scholar 

  28. Vivek J, Dr Alok S (2015) Analysis of lubrication in milling machine. Int J Eng Tech Res 4(4):256–259

    Google Scholar 

  29. Cai C, Liang X, An Q et al (2020) Cooling/lubrication performance of dry and supercritical CO2-based minimum quantity lubrication in peripheral milling Ti-6Al-4V. Int J Precis Eng Manuf - Green Technol 8:405–421

    Article  Google Scholar 

  30. Kim DY, Kim DM, Park HW (2019) Numerical and experimental study of end-milling process of titanium alloy with a cryogenic internal coolant supply. Int J Adv Manuf Technol 105(7/8):2957–2975

    Article  Google Scholar 

  31. Ziberov M, Da Silva MB, Jackson M et al (2016) Effect of cutting fluid on micromilling of Ti-6Al-4V titanium alloy. Procedia Manuf 5:332–347

    Article  Google Scholar 

  32. Varadarajan AS, Philip PK, Ramamoorthy B (2002) Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning. Int J Mach Tools Manuf 42(2):193–200

    Article  Google Scholar 

  33. Bräunig M, Regel J, Glanzel J et al (2019) Effects of cooling lubricant on the thermal regime in the working space of machine tools. Procedia Manuf 33:327–334

    Article  Google Scholar 

  34. Tlhabadira I, Daniyan IA, Masu L et al (2019) Process design and optimization of surface roughness during M200 TS milling process using the Taguchi method. Procedia CIRP 84:868–873

    Article  Google Scholar 

  35. Imani L, Rahmani HA, Hamzeloo R et al (2020) Modeling and optimizing of cutting force and surface roughness in milling process of Inconel 738 using hybrid ANN and GA. Proc Inst Mech Eng Part B J Eng Manuf 234(5):920–932

    Article  Google Scholar 

  36. Hrennikoff A (1941) Solution of problems of elasticity by the framework method. J Appl Mech 8(4):169–175

    Article  MathSciNet  MATH  Google Scholar 

  37. Paul R, Paddison SJ (2003) Variational methods for the solution of the Ornstein-Zernicke equation in inhomogeneous systems. Phys Rev E - Stat Phys Plasmas Fluids Relat Interdiscip Top 67(1):11. https://doi.org/10.1103/PhysRevE.67.016108

    Article  Google Scholar 

  38. Hinton E, Irons B (1968) Least squares smoothing of experimental data using finite elements. Strain 4(3):24–27

    Article  Google Scholar 

  39. Strang G, Fix GJ (1973). An analysis of the finite element method(Book- An analysis of the finite element method.). Englewood Cliffs, N. J., Prentice-Hall, Inc., 1973. p 318

  40. Zienkiewicz OC (2013) The finite element method: its basis and fundamentals, Elsevier, Amsterdam. https://doi.org/10.1016/b978-1-85617-633-0.00020-4

    Book  MATH  Google Scholar 

  41. Tay AO, Stevenson MG, De Vahl DG (1974) Using the finite element method to determine temperature distributions in orthogonal machining. Inst Mech Eng Proc 188(55):627–638

    Article  Google Scholar 

  42. Muraka PD, Barrow G, Hinduja S (1979) Influence of the process variables on the temperature distribution in orthogonal machining using the finite element method. Int J Mech Sci 21(8):445–456

    Article  MATH  Google Scholar 

  43. Holmquist TJ, Johnson GR (1991) Determination of constants and comparison of results for various constitutive models. Le J Phys IV 1(C3):853–860

    Google Scholar 

  44. GaoY HJ, Pueh H (2020) Meso-scale tool breakage prediction based on finite element stress analysis for shoulder milling of hardened steel. J Manuf Process 55:31–40

    Article  Google Scholar 

  45. Özel T, Zeren E (2004) Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests. J Mater Process Technol 153–154(1/3):1019–1025

    Article  Google Scholar 

  46. Bariani PP, Dal NT, Bruschi S (2004) Testing and modelling of material response to deformation in bulk metal forming. CIRP Ann Manuf Technol 53(2):573–595

    Article  Google Scholar 

  47. Chaparro BM, Thuillier S, Menezes LF et al (2008) Material parameters identification: gradient-based, genetic and hybrid optimization algorithms. Comput Mater Sci 44(2):339–346

    Article  Google Scholar 

  48. Hokeš F, Kala J, Hušek M et al (2016) Parameter identification for a multivariable nonlinear constitutive model inside ANSYS workbench. Procedia Eng 161:892–897

    Article  Google Scholar 

  49. Germain G, Morel A, Braham-Bouchnak T (2013) Identification of material constitutive laws representative of machining conditions for two titanium alloys: Ti6Al4V and Ti555-3. J Eng Mater Technol Trans ASME 135(3):1–12

    Article  Google Scholar 

  50. Melkote SN, Grzesik W, Quteiro J et al (2017) Advances in material and friction data for modelling of metal machining. CIRP Ann Manuf Technol 66(2):731–754

  51. Özel T, Karpat Y (2007) Identification of constitutive material model parameters for high-strain rate metal cutting conditions using evolutionary computational algorithms. Mater Manuf Process 22(5):659–667

    Article  Google Scholar 

  52. Childs THC (1997) Material property requirements for modelling metal machining. J Phys IV JP7(C3):XXI–XXXVI. https://doi.org/10.1051/jp4:1997301

    Article  Google Scholar 

  53. Hor A, Morel F, Lou LJ et al (2013) Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range. Mech Mater 64:91–110

    Article  Google Scholar 

  54. Denguir LA, Outeiro JC, Fromentin G et al (2016) Orthogonal cutting simulation of OFHC copper using a new constitutive model considering the state of stress and the microstructure effects. Procedia CIRP 46:238–241

    Article  Google Scholar 

  55. Liu R, Salahshoor M, Melkote SN et al (2015) A unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copper. J Mater Process Technol 216:328–338

    Article  Google Scholar 

  56. Outeiro JC, Umbrello D, M’Saoubi R et al (2015) Evaluation of present numerical models for predicting metal cutting performance and residual stresses. Mach Sci Technol 19(2):183–216

    Article  Google Scholar 

  57. Chagnes A, Mialkowski C, Carré B et al (2001) Phase diagram of γ-butyrolactone-dimethyl-carbonate mixtures. Le Journal de Physique IV, 11(PR10), Pr10-27

  58. Dang J, Zhang W, Yang Y et al (2010) Cutting force modeling for flat end milling including bottom edge cutting effect. Int J Mach Tools Manuf 50(11):986–997

    Article  Google Scholar 

  59. Matsumura T, Usui E (2010) Predictive cutting force model in complex-shaped end milling based on minimum cutting energy. Int J Mach Tools Manuf 50(5):458–466

    Article  Google Scholar 

  60. Pabst R, Fleischer J, Michna J (2010) Modelling of the heat input for face-milling processes. CIRP Ann Manuf Technol 59(1):121–124

    Article  Google Scholar 

  61. Zhang YC, Mabrouki T, Nelias D et al (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47(7):850–863

    Article  Google Scholar 

  62. Akhtar MM, Xiang H, Chen WL et al (2011) Milling dynamics of flexible part with helix angle. Procedia Eng 23:792–798

    Article  Google Scholar 

  63. Jin X, Altintas Y (2012) Prediction of micro-milling forces with finite element method. J Mater Process Techol 212(3):542–552

    Article  Google Scholar 

  64. Malekian M, Mostofa MG, Park SS et al (2012) Modeling of minimum uncut chip thickness in micro machining of aluminum. J Mater Process Techol 212(3):553–559

    Article  Google Scholar 

  65. Balogun VA, Mativenga PT (2013) Modelling of direct energy requirements in mechanical machining processes. J Clean Prod 41:179–186

    Article  Google Scholar 

  66. Joliet R, Byfut A, Kersting P et al (2013) Validation of a heat input model for the prediction of thermomechanical deformations during NC milling. Procedia CIRP 8:403–408

    Article  Google Scholar 

  67. Smolenicki D, Boos J, Kuster F et al (2014) In-process measurement of friction coefficient in orthogonal cutting. CIRP Ann Manuf Technol 63(1):97–100

    Article  Google Scholar 

  68. Lazoglu I, Bugdayci B (2014) Thermal modelling of end milling. CIRP Ann Manuf Technol 63(1):113–116

    Article  Google Scholar 

  69. Jiao L, Wang X, Qian Y et al (2015) Modelling and analysis for the temperature field of the machined surface in the face milling of aluminium alloy. Int J Adv Manuf Technol 81:1797–1808

    Article  Google Scholar 

  70. Kara ME, Budak E (2015) Optimization of turn-milling processes. Procedia CIRP 33:476–483

    Article  Google Scholar 

  71. Çal H, Küçükköse M (2015) The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy. Int J Refract Met Hard Mater 50:304–312

    Article  Google Scholar 

  72. Malakizadi A, Gruber H, Sadik I et al (2016) An FEM-based approach for tool wear estimation in machining. Wear 368/369:10–24

  73. Zhu L, Li H, Liu C (2016) Analytical modeling on 3D chip formation of rotary surface in orthogonal turn-milling. Arch Civ Mech Eng 16(4):590–604

    Article  Google Scholar 

  74. Wu BH, Cui D, He XD et al (2016) Cutting tool temperature prediction method using analytical model for end milling. Chin J Aeronaut 29(6):1788–1794

    Article  Google Scholar 

  75. Putz M, Schmidt G, Semmler U et al (2016) Modeling of heat fluxes during machining and their effects on thermal deformation of the cutting tool. Procedia CIRP 46:611–614

    Article  Google Scholar 

  76. Mamedov A, Lazoglu I (2016) Thermal analysis of micro milling titanium alloy Ti-6Al-4V. J Mater Process Techol 229:659–667

    Article  Google Scholar 

  77. Soori M, Arezoo B, Habibi M (2017) Accuracy analysis of tool deflection error modelling in prediction of milled surfaces by a virtual machining system. Int J Comput Appl Technol 55(4):308–321

    Article  Google Scholar 

  78. Malghan RL, Rao KMC, ArunKumar S et al (2018) Effect of process parameters in face milling operation and analysis of cutting force using indirect method. Mater Manuf Process 33(13):1406–1414

    Article  Google Scholar 

  79. Biermann D, Bücker M, Tiffe M et al (2017) Experimental investigations for a simulative optimization of the cutting edge design of twist drills used in the machining of Inconel 718. Procedia Manuf 14:8–16

    Article  Google Scholar 

  80. Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) Finite element modelling of 3D orthogonal cutting experimental tests with the Coupled Eulerian-Lagrangian (CEL) formulation. Finite Elem Anal Des 134:27–40

    Article  MATH  Google Scholar 

  81. Stief P, Dantan J, Etienne A et al (2018) 3D Eulerian finite modelling of end milling. Procedia CIRP 77:159–162

    Article  Google Scholar 

  82. Gulpak M, Wernsing H, Sölter J et al (2018) Compensation strategies for thermal effects in dry milling. In Biermann D, Hollmann F (eds) Thermal effects in complex machining processes, Springer, Berlin, pp 251–288

    Chapter  Google Scholar 

  83. Karaguzel U, Budak E (2018) Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods. J Mater Process Technol 262:532–540

    Article  Google Scholar 

  84. Feng Y, Pan Z, Liang SY (2018) Temperature prediction in Inconel 718 milling with microstructure evolution. Int J Adv Manuf Technol 95(9/12):4607–4621

    Article  Google Scholar 

  85. Geier N, Szalay T, Biró I (2018) Trochoid milling of carbon fibre-reinforced plastics (CFRP) Procedia CIRP 77:375-378

  86. Wang SQ, Li JG, He CL et al (2019) A 3D analytical model for residual stress in flank milling process. Int J Adv Manuf Technol 104(9/12):3545–3565

    Article  Google Scholar 

  87. Zhou R, Yang W (2019) Analytical modeling of machining-induced residual stresses in milling of complex surface. Int J Adv Manuf Technol 105:565–577

    Article  Google Scholar 

  88. Otalora-Ortega H, Osoro PA, Arrazola APJ (2019) Analytical modeling of the uncut chip geometry to predict cutting forces in orthogonal centric turn-milling operations. Int J Mach Tools Manuf 144:103428. https://doi.org/10.1016/j.ijmachtools.2019.103428

    Article  Google Scholar 

  89. Prasad VUSV, Rao KV, Balaji M et al (2020) FEA investigation of process parameters effect on machining characteristics in helical milling. Mater Today Proc 23:590–593

    Article  Google Scholar 

  90. Augspurger T, Da Silva G, Schraknepper D et al (2020) Model-based monitoring of temperatures and heat flows in the milling cutter. Int J Adv Manuf Technol 107(9/10):4231–4238

    Article  Google Scholar 

  91. Arizmendi M, Jiménez A (2019) Modelling and analysis of surface topography generated in face milling operations. Int J Mech Sci 163:105061. https://doi.org/10.1016/j.ijmecsci.2019.105061

    Article  Google Scholar 

  92. Davoudinejad A, Li D, Zhang Y et al (2019) Optimization of corner micro end milling by finite element modelling for machining thin features. Procedia CIRP 82:362–367

    Article  Google Scholar 

  93. Roushan A, Rao US, Vijayaraghavan L (2020) Prediction of cutting force in micro-end-milling by a combination of analytical and FEM method. J Micromanuf 3(1):28–38

    Article  Google Scholar 

  94. Kryzhanivskyy V, Saoubi RM, Ståhl JE et al (2019) Tool-chip thermal conductance coefficient and heat flux in machining: theory, model and experiment. Int J Mach Tools Manuf 147:103468. https://doi.org/10.1016/j.ijmachtools.2019.103468

    Article  Google Scholar 

  95. Sima M (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tool Manuf 50:943–960

    Article  Google Scholar 

  96. Basturk S, Senbabaoglu F, Islam C et al (2010) Titanium machining with new plasma boronized cutting tools. CIRP Ann Manuf Technol 59(1):101–104

    Article  Google Scholar 

  97. Rao B, Dandekar CR, Shin YC (2011) An experimental and numerical study on the face milling of Ti-6Al-4V alloy: tool performance and surface integrity. J Mater Process Technol 211(2):294–304

    Article  Google Scholar 

  98. Thepsonthi T, Ulutan D, Kaftanog B (2011) Experiments and finite element simulations on micro-milling of Ti-6Al-4V alloy with uncoated and CBN coated micro-tools. CIRP Ann Manuf Technol 60:85–88

    Article  Google Scholar 

  99. Thepsonthi T (2013) Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy: effects of CBN coating on tool wear. J Mater Process Technol 213:532–542

    Article  Google Scholar 

  100. Rech J, Arrazola PJ, Claudin C et al (2013) Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting. CIRP Ann Manuf Technol 62(1):79–82

    Article  Google Scholar 

  101. Wu BH, Yan X, Luo M et al (2013) Cutting force prediction for circular end milling process. Chin J Aeronaut 26(4):1057–1063

    Article  Google Scholar 

  102. Thepsonthi T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Tech 221:128–145

    Article  Google Scholar 

  103. Fu Z, Yang W, Wang X et al (2015) Analytical modelling of milling forces for helical end milling based on a predictive machining theory. Procedia CIRP 31:258–263

    Article  Google Scholar 

  104. Davoudinejad A, Chiappini E, Tirelli S et al (2015) Finite element simulation and validation of chip formation and cutting forces in dry and cryogenic cutting of Ti-6Al-4V. Procedia Manuf 1:728–739

    Article  Google Scholar 

  105. Nieslony P, Grzesik W, Bartoszuk M et al (2016) Analysis of mechanical characteristics of face milling process of Ti6AI4V alloy using experimental and simulation data. J Mach Eng 16(3):58–66

    Google Scholar 

  106. Aslantas K, Hopa HE, Percin M (2016) Cutting performance of nano-crystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precis Eng 45:55–66

    Article  Google Scholar 

  107. Ucun İ, Aslantas K, Özkaya E et al (2017) 3D numerical modelling of micro-milling process of Ti6Al4V alloy and experimental validation. Adv Mater Process Technol 3(3):250–260

    Google Scholar 

  108. Cui D, Zhang D, Wu B et al (2017) An investigation of tool temperature in end milling considering the flank wear effect. Int J Mech Sci 131/132:613–624

  109. Klocke F, Döbbeler B, Peng B et al (2017) FE-simulation of the cutting process under consideration of cutting fluid. Procedia CIRP 58:341–346

    Article  Google Scholar 

  110. Akmal M, Layegh KSE, Lazoglu I et al (2017) Friction coefficients on surface finish of AlTiN coated tools in the milling of Ti6Al4V. Procedia CIRP 58:596–600

    Article  Google Scholar 

  111. Ducobu F, Rivière-Lorphèvre E, Filippi E (2017) Mesh influence in orthogonal cutting modelling with the coupled Eulerian-Lagrangian (CEL) method. Eur J Mech A/Solids 65:324–335

    Article  MathSciNet  MATH  Google Scholar 

  112. Nguyen V, Fernandez-Zelaia P, Melkote SN (2017) PVDF sensor based characterization of chip segmentation in cutting of Ti-6Al-4V alloy. CIRP Ann Manuf Technol 66(1):73–76

    Article  Google Scholar 

  113. Yaich M, Ayed Y, Bouaziz Z et al (2020) A 2D finite element analysis of the effect of numerical parameters on the reliability of Ti6Al4V machining modeling. Mach Sci Technol 24(4):509–543

    Article  Google Scholar 

  114. Ying N, Feng J, Bo Z (2020) A novel 3D finite element simulation method for longitudinal-torsional ultrasonic-assisted milling. Int J Adv Manuf Technol 106(1/2):385–400

    Article  Google Scholar 

  115. Shi KN, Ren JX, Wang SB et al (2019) An improved cutting power-based model for evaluating total energy consumption in general end milling process. J Clean Prod 231:1330–1341

    Article  Google Scholar 

  116. Mohruni AS, Zahir M, Yanis M et al (2019) Investigation of finite element modelling on thin-walled machining of Ti6Al4V using DEFORM-3D. J Phys Conf Ser 1167(1):012002. https://doi.org/10.1088/1742-6596/1167/1/012002

    Article  Google Scholar 

  117. Augspurger T, Bergs T, Döbbeler B (2019) Measurement and modeling of heat partitions and temperature fields in the workpiece for cutting inconel 718, AISI 1045, Ti6Al4V, and AlMgSi0.5. J Manuf Sci Eng Trans ASME 141(6):061007. https://doi.org/10.1115/1.4043311

    Article  Google Scholar 

  118. Oliaei SNB, Karpat Y (2019) Modelling and analysis of tool deflections in tailored micro end mills. Int J Mechatron Manuf Syst 12(1):20–37

    Google Scholar 

  119. Kim SH, Lee SW, Han S et al (2019) Numerical investigation of thermal characteristics of spray cooling with minimum quantity lubrication in milling process. Appl Math Model 65:137–147

    Article  MathSciNet  MATH  Google Scholar 

  120. Wan M, Wen DY, Ma YC et al (2019) On material separation and cutting force prediction in micro milling through involving the effect of dead metal zone. Int J Mach Tools Manuf 146:103452. https://doi.org/10.1016/j.ijmachtools.2019.103452

    Article  Google Scholar 

  121. Daramola OO et al (2019) Process design for optimal minimization of resultant cutting force during the machining of Ti-6Al-4V: response surface method and desirability function analysis. Procedia CIRP 84:854–860

    Article  Google Scholar 

  122. Guo XG, Li M, Dong ZG et al (2019) Smooth particle hydrodynamics modeling of cutting force in milling process of TC4. Adv Manuf 7(4):364–373

    Article  Google Scholar 

  123. Jadam T, Rakesh M, Datta S (2020) Machinability of Ti-6Al-4V superalloy: performance of dry cutting and nanofluid MQL (MWCNT-added rice bran oil). Arab J Sci Eng 45(7):5673–5695

    Article  Google Scholar 

  124. Boldyrev IS, Shchurov IA (2017) FEM thermo-mechanical simulation of the free orthogonal cutting and temperature distribution in tool and workpiece. Procedia Eng 206:1133–1136

    Article  Google Scholar 

  125. Kara S, Li W (2011) Unit process energy consumption models for material removal processes. CIRP Ann Manuf Technol 60:37–40

    Article  Google Scholar 

  126. Karaguzel U, Bakkal M, Budak E (2012) Process modeling of turn-milling using analytical approach. Procedia CIRP 4:131–139

    Article  Google Scholar 

  127. Puls H, Klocke F, Lung D (2014) Experimental investigation on friction under metal cutting conditions. Wear 310(1/2):63–71

    Article  Google Scholar 

  128. Karagüzel U, Uysal E, Budak E (2015) Analytical modeling of turn-milling process geometry, kinematics and mechanics. Int J Mach Tools Manuf 91:24–33

    Article  Google Scholar 

  129. Benabid F, Benmoussa H, Arrouf M (2014) A thermal modeling to predict and control the cutting temperature. The simulation of face-milling process. Procedia Eng 74:37–42

    Article  Google Scholar 

  130. Fulemova J, Janda Z (2014) Influence of the cutting edge radius and the cutting edge preparation on tool life and cutting forces at inserts with wiper geometry. Procedia Eng 69:565–573

    Article  Google Scholar 

  131. Liu N, Zhang YF, Lu WF (2015) A hybrid approach to energy consumption modelling based on cutting power: a milling case. J Clean Prod 104:264–272

    Article  Google Scholar 

  132. Mzad H (2015) A simple mathematical procedure to estimate heat flux in machining using measured surface temperature with infrared laser. Case Stud Therm Eng 6:128–135

    Article  Google Scholar 

  133. Puls H, Klocke F, Döbbeler B et al (2016) Multiscale modeling of thermoelastic workpiece deformation in dry cutting. Procedia CIRP 46:27–30

    Article  Google Scholar 

  134. Putz M, Oppermann C, Semmler U et al (2017) Consistent simulation strategy for heat sources and fluxes in milling. Procedia CIRP 62:239–244

    Article  Google Scholar 

  135. Segebade E, Gerstenmeyer M, Zanger F et al (2017) Cutting simulations using a commercially available 2D/3D FEM software for forming. Procedia CIRP 58:73–78

    Article  Google Scholar 

  136. Kushner V, Storchak M (2017) Determination of material resistance characteristics in cutting. Procedia CIRP 58:293–298

    Article  Google Scholar 

  137. Medina N, Lambea P, Manjabacas MC et al (2017) Evaluating temperature in faced milling operations by infrared thermography. Therm Sci 21(6):3051–3061

    Article  Google Scholar 

  138. Karaguzel U, Bakkal M, Budak E (2017) Mechanical and thermal modeling of orthogonal turn-milling operation. Procedia CIRP 58:287–292

    Article  Google Scholar 

  139. Abouridouane M, Klocke F, Oktafiani A et al (2017) Microstructure-based FEM simulation of metal cutting. Procedia CIRP 58:85–90

    Article  Google Scholar 

  140. Karaguzel U, Bakkal M, Budak E (2016) Modeling and measurement of cutting temperatures in milling. Procedia CIRP 46:173–176

    Article  Google Scholar 

  141. Mareš M, Horejš O (2017) Modelling of cutting process impact on machine tool thermal behaviour based on experimental data. Procedia CIRP 58:152–157

    Article  Google Scholar 

  142. Khare SK, Agarwal S (2017) Optimization of machining parameters in turning of AISI 4340 steel under cryogenic condition using Taguchi technique. Procedia CIRP 63:610–614

    Article  Google Scholar 

  143. Wojciechowski S, Maruda W, Krolczyk GM et al (2018) Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling. Precis Eng 51:582–596

    Article  Google Scholar 

  144. Das RK, Kumar R, Sarkar G et al (2018) Comparative machining performance of hardened AISI 4340 steel under dry and minimum quantity lubrication environments. Mater Today Proc 5(11):24898–24906

    Article  Google Scholar 

  145. Srikant R, Krishna V, Syed I et al (2018) Development of finite element based model for performance evaluation of nano cutting fluids in minimum quantity lubrication. CIRP J Manuf Sci Technol 21:75–85

    Article  Google Scholar 

  146. Sarnobat SS, Raval HK (2019) Experimental investigation and analysis of the influence of tool edge geometry and work piece hardness on surface residual stresses, surface roughness and work-hardening in hard turning of AISI D2 steel. Measurement 131:235–260

    Article  Google Scholar 

  147. Klocke F, Kneer R, Burghold M et al (2017) Modelling and compensation of thermoelastic workpiece deformation in dry cutting. In Biermann D, Hollmann F (eds) Thermal effects in complex machining processes. Springer, Berlin, pp 63–94

    Google Scholar 

  148. Denkena B, Maa P, Schmidt A et al (2018) Thermomechanical deformation of complex workpieces in milling and drilling processes. In: Biermann D, Hollmann F (eds) Thermal effects in complex machining processes, Springer, Berlin, pp 219–250

    Chapter  Google Scholar 

  149. Kundrak J, Felho C (2018) Topography of the machined surface in high performance face milling. Procedia CIRP 77:340–343

    Article  Google Scholar 

  150. Mohanraj T, Shankar S, Rajasekar R (2020) Design, development, calibration, and testing of indigenously developed strain gauge based dynamometer for cutting force measurement in the milling process. J Mech Eng Sci 14(2):6594–6609

    Article  Google Scholar 

  151. Utsumi K, Shichiri S, Sasahara H (2020) Determining the effect of tool posture on cutting force in a turn milling process using an analytical prediction model. Int J Mach Tools Manuf 150:103511. https://doi.org/10.1016/j.ijmachtools.2019.103511

    Article  Google Scholar 

  152. Cheng Y, Li C, Yuan Q et al (2019) Experiment and model of cutting force of heavy-duty milling water chamber head material. SN Appl Sci 1(12):1–9

    Article  Google Scholar 

  153. Daniyan IA, Tlhabadira I, Daramola OO et al (2020) Measurement and optimization of cutting forces during M200 TS milling process using the response surface methodology and dynamometer. Procedia CIRP 88:288–293

    Article  Google Scholar 

  154. Singh BK, Roy H, Mondal B et al (2019) Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement 42:181–194

    Article  Google Scholar 

  155. Chau MQ (2020) Modeling 3D surface milling process using a ball-end milling cutter. J Mech Eng Res Dev 43(3):50–63

    Google Scholar 

  156. Denkena B, Schmidt A, Maaß P et al (2015) Prediction of temperature induced shape deviations in dry milling. Procedia CIRP 31:340–345

    Article  Google Scholar 

  157. Denkena B, Schmidt C, Kr M (2010) Experimental investigation and modeling of thermal and mechanical influences on shape deviations in machining structural parts. Int J Mach Tool Manuf 50:1015–1021

    Article  Google Scholar 

  158. Zhang X, Mu H, Huang X et al (2015) Cryogenic milling of aluminium-lithium alloys: thermo-mechanical modelling towards fine-tuning of part surface residual stress. Procedia CIRP 31:160–165

    Article  Google Scholar 

  159. Liu N, Wang SB, Zhang YF (2016) A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. Int J Mech Sci 118:13–20

    Article  Google Scholar 

  160. Rahman A (2015) A review on end milling technology in metal cutting process, pp 3–7

  161. Han S, Faverjon P, Valiorgue F (2017) Heat flux density distribution differences in four machining processes of AlSi7 block: MQL drilling, tapping, reaming and dry milling. Procedia CIRP 58:61–66

    Article  Google Scholar 

  162. Mebrahitom A, Choon W, Azhari A (2017) Side milling machining simulation using finite element analysis: prediction of cutting forces. Mater Today Proc 4(4):5215–5221

    Article  Google Scholar 

  163. Kumar D (2018) Efficient optimization of process parameters in 2.5 D end milling using neural network and genetic algorithm. Int J Syst Assur Eng Manag 9(5):1198–1205

    Article  Google Scholar 

  164. Zhang X, Yu T, Wang W (2018) Prediction of cutting forces and instantaneous tool deflection in micro end milling by considering tool run-out. Int J Mech Sci 136:124–133

    Article  Google Scholar 

  165. Biermann D, Hollmann F (2017) Thermal effects in complex machining processes: final report of the DFG priority programme 1480. Springer, Berlin

    Google Scholar 

  166. Hussain A, Lazoglu I (2019) Distortion in milling of structural parts. CIRP Ann 68(1):105–108

    Article  Google Scholar 

  167. Suraidah S, Ridzuwan M, Asmelash M (2020) End milling finite element method for cutting force prediction and material removal analysis. IOP Conf Ser Mater Sci Eng 788(1):012020. https://doi.org/10.1088/1757-899X/788/1/012020

    Article  Google Scholar 

  168. Dong X, Qiu Z (2020) Stability analysis in milling process based on updated numerical integration method. Mech Syst Signal Process 137:106435. https://doi.org/10.1016/j.ymssp.2019.106435

    Article  Google Scholar 

  169. Liang X, Liu Z, Wang B (2019) State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review. Meas J Int Meas Confed 132:150–181

    Article  Google Scholar 

  170. Fu Z, Chen X, Mao J et al (2018) An analytical force mode applied to three-dimensional turning based on a predictive machining theory. Int J Mech Sci 136:94–105

    Article  Google Scholar 

  171. PratapT PK (2017) Finite element method based modeling for prediction of cutting forces in micro-end milling. J Inst Eng Ser C 98(1):17–26

    Article  Google Scholar 

  172. Zuo JY, Lin YX, Zheng JC (2019) An investigation of thermal-mechanical interaction effect on PVD coated tool wear for milling Be/Cu alloy. Vacuum 167:271–279

    Article  Google Scholar 

  173. Jia Y, Quan C, Guo J et al (2020) Finite element analysis on processing of PCD end-mill milling copper. Mater Sci Forum 993:421–426

    Article  Google Scholar 

  174. Niu Z, Cheng K (2020) Improved dynamic cutting force modelling in micro milling of metal matrix composites part I: theoretical model and simulations. Proc Inst Mech Eng Part C J Mech Eng Sci 234(9):1733–1745

    Article  Google Scholar 

  175. Putz M, Schmidt G, Semmler U et al (2015) Heat flux in cutting: importance, simulation and validation. Procedia CIRP 31:334–339

    Article  Google Scholar 

  176. Grzesik W, Nieslony P, Habrat W, Laskowski P (2015) Influence of cutting conditions on temperature distribution in face milling of Inconel 718 nickel-chromium alloy. J Mach Eng 15

  177. He ZH, Zhang XM, Ding H (2016) Comparison of residual stresses in cryogenic and dry machining of Inconel 718. Procedia CIRP 46:19–22

    Article  Google Scholar 

  178. Li J, Yu W, An Q et al (2020) A modeling and prediction method for plunge cutting force considering the small displacement of cutting layer. Proc Inst Mech Eng Part B J Eng Manuf 234(11):1369–1378

    Article  Google Scholar 

  179. Lu X, Wang H, Jia Z et al (2019) Coupled thermal and mechanical analyses of micro-milling Inconel 718. Proc Inst Mech Eng Part B J Eng Manuf 233(4):1112–1126

    Article  Google Scholar 

  180. Wang C, Zhao J, Zhou Y (2020) Mechanics and dynamics study of helical milling process for nickel-based superalloy. Int J Adv Manuf Technol 106(5/6):2305–2316

    Article  Google Scholar 

  181. Ciecieląg K, Kecik K, Zaleski K (2020) Defects detection from time series of cutting force in composite milling process by recurrence analysis. J Reinf Plast Compos 39(23/24):890–901

    Article  Google Scholar 

  182. Liao Z, Axinte DA, Gao D (2017) A novel cutting tool design to avoid surface damage in bone machining. Int J Mach Tools Manuf 116:52–59

    Article  Google Scholar 

  183. Al-Abdullah AL, Abdi H, Lim CP et al (2018) Force and temperature modelling of bone milling using artificial neural networks. Meas J Int Meas Confed 116:25–37

  184. Liao Z, Axinte D (2019) On modelling of cutting force and temperature in bone milling. J Mater Process Tech 266:627–638

    Article  Google Scholar 

  185. Zhang N, Shi Y (2019) A 3-D instantaneous cutting force prediction model of indexable disc milling cutter for manufacturing blisk-tunnels considering run-out. Int J Adv Manu Tech 103:4029–4039

    Article  Google Scholar 

  186. Wang B, Liu Z (2018) Influences of tool structure, tool material and tool wear on machined surface integrity during turning and milling of titanium and nickel alloys: a review. Int J Adv Manuf Technol 98(5/8):1925–1975

    Article  Google Scholar 

  187. Cai S, Yao B, Feng W et al (2020) Milling process simulation for the variable pitch cutter based on an integrated process-machine model. Int J Adv Manu Tech 106:2779–2791

    Article  Google Scholar 

  188. Umbrello D, Davies M, Jawahir IS et al (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62:695–718

  189. Wan M, Li S, Yuan H et al (2019) Cutting force modelling in machining of fiber-reinforced polymer matrix composites (PMCs): a review. Compos Part A 117:34–55

    Article  Google Scholar 

  190. Shi KN, Zhang DH, Liu N et al (2018) A novel energy consumption model for milling process considering tool wear progression. J Clean Prod 184:152–159

    Article  Google Scholar 

  191. Li J, Cai X, An Q et al (2020) A hybrid approach for cutting force prediction in flank milling based on analytical and 3D finite element method. Int J Adv Manuf Technol 110(5/6):1601–1613

    Article  Google Scholar 

  192. Li G, Liu M, Zhao S (2021) Reduced computational time in 3D finite element simulation of high speed milling of 6061-T6 aluminum alloy. Mach Sci Technol 25(4):558–584

    Article  Google Scholar 

  193. Ren Z, Zhang X, Wang Y et al (2021) Finite element analysis of the milling of Ti6Al4V titanium alloy laser additive manufacturing parts. Appl Sci 11(11):4813. https://doi.org/10.3390/app11114813

  194. Prasad BS, Babu MP, Reddy YR (2016) Evaluation of correlation between vibration signal features and three-dimensional finite element simulations to predict cutting tool wear in turning operation. Proc Inst Mech Eng Part B J Eng Manuf 230(2):203–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Pratap Singh.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Trehan, R. & Singh, R.P. State of the art in finite element approaches for milling process: a review. Adv. Manuf. 11, 708–751 (2023). https://doi.org/10.1007/s40436-022-00417-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-022-00417-x

Keywords

Navigation