Skip to main content
Log in

Extended state observer based robust sliding mode control for fourth order nonlinear systems with experimental validation

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

It is commonly known that the design of control is difficult for the systems with non-minimum phase behavior, the coupling between the controlled variables and integral instability. The paper presents such a typical class of nonlinear system and propose a new technique generalized extended state observer-based sliding mode decoupling control. The proposed control algorithm is also able to compensate for the matched and mismatched uncertainties encountered in such nonlinear non-minimum phase systems. The decoupling control approach is used to decouple the entire system framework into subsystems. The sliding surface of the individual subsystem was composed using the estimated states of GESO. The proposed technique can nullify the effect of external disturbances, parametric uncertainties and unmodelled dynamics due to the inclusion of disturbance compensation gain in the control law. The proposed methodology enables the system to accomplish asymptotic stability and better dynamic response with lesser IAE and ITAE values than existing decoupling control strategies. An experimental application of the proposed technique to Quanser’s rotary pendulum module is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xie Liang-Liang, Guo Lei (2000) How much uncertainty can be dealt with by feedback? IEEE Trans Automatic Control 45(12):2203–2217

    Article  MathSciNet  Google Scholar 

  2. Gao Zhiqiang (2014) On the centrality of disturbance rejection in automatic control. ISA Trans 53(4):850–857

    Article  Google Scholar 

  3. Chen WH, Yang J, Guo L, Li S (2016) Disturbance observer based control and related methods :an overview. IEEE Trans Ind Electr 63(2):1083–1095

    Article  Google Scholar 

  4. Utkin V (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MathSciNet  Google Scholar 

  5. Slotine Jean-Jacques E, Weiping Li (1991) Applied nonlinear control, vol 199. Prentice-Hall Englewood Cliffs, NJ

    MATH  Google Scholar 

  6. Hung JY, Gao W, Hung JC (1993) Variable structure control: a survey. IEEE Trans Ind Electr 40(1):2–22

    Article  Google Scholar 

  7. Utkin Vadim I (1992) Sliding modes in control of electric motors. In: Dickinson BW, Fettweis A, Massey JL, Modestino JW, Sontag ED, Thoma M (eds) Sliding modes in control and optimization. Springer, Berlin, Heidelberg, pp 250–264

    Chapter  Google Scholar 

  8. Kadu CB, Khandekar AA, Patil CY (2018) Sliding mode controller with state observer for tito systems with time delay. Int J Dyn Control 6(2):799–808

    Article  MathSciNet  Google Scholar 

  9. Han Ho Choi (2007) LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans Autom Control 52(4):736–742

    Article  MathSciNet  Google Scholar 

  10. Johnson CD (1971) Accomodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans Autom Control 16(6):635–644

    Article  Google Scholar 

  11. Wen-Hua Chen, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electr 47(4):932–938

    Article  Google Scholar 

  12. Chen Wen-Hua (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatr 9(4):706–710

    Article  Google Scholar 

  13. Guo Lei, Chen Wen-Hua (2005) Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int J Robust Nonlinear Control 15(3):109–125

    Article  MathSciNet  Google Scholar 

  14. She JH, Fang M, Ohyama Y, Hashimoto H, Wu M (2008) Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans Ind Electr 55(1):380–389

    Article  Google Scholar 

  15. Han J (1995) Extended state observer for a class of uncertain plants. Control Decis 10(1):85–88

    Google Scholar 

  16. Gao Zhiqiang (June 2006) Active disturbance rejection control: a paradigm shift in feedback control system design. In: American Control Conference, pp 2399–2405

  17. Han Jingqing (2009) From PID to active disturbance rejection control. IEEE Trans Ind Electr 56(3):900–906

    Article  Google Scholar 

  18. Sun D (2007) Comments on active disturbance rejection control. IEEE Trans Ind Electr 54(6):3428–3429

    Article  Google Scholar 

  19. Ren Chao, Ding Yutong, Li Xiaohan, Zhu Xinshan, Ma Shugen (2019) Extended state observer based robust friction compensation for tracking control of an omnidirectional mobile robot. J Dyn Syst Meas Control 141(10):101001

    Article  Google Scholar 

  20. Pawar SN, Chile RH, Patre BM (2017a) Modified reduced order observer based linear active disturbance rejection control for tito systems. ISA Trans 71:480–494

    Article  Google Scholar 

  21. Hua Chang-Chun, Wang Kai, Chen Jian-Nan, You Xiu (2018) Tracking differentiator and extended state observer-based nonsingular fast terminal sliding mode attitude control for a quadrotor. Nonlinear Dyn 94(1):343–354

    Article  Google Scholar 

  22. Talole SE, Kolhe JP, Phadke SB (2010) Extended-state-observer-based control of flexible-joint system with experimental validation. IEEE Trans Ind Electr 57(4):1411–1419

    Article  Google Scholar 

  23. Pawar SN, Chile RH, and Patre BM (Jan 2017b) Design of generalized extended state observer based control for nonlinear systems with matched and mismatched uncertainties. In: Indian Control Conference (ICC), pp 65–71

  24. Min Wu, Pan Yu, Chen Xin, She Jinhua (2017) Design of repetitive-control system with input dead zone based on generalized extended-state observer. J Dyn Syst Meas Control 139(7):071008

    Article  Google Scholar 

  25. Bayramoglu Husnu, Komurcugil Hasan (2013) Nonsingular decoupled terminal sliding-mode control for a class of fourth-order nonlinear systems. Commun Nonlinear Sci Numer Simul 18(9):2527–2539

    Article  MathSciNet  Google Scholar 

  26. Yorgancioglu Ferhun, Komurcugil Hasan (2010) Decoupled sliding-mode controller based on time-varying sliding surfaces for fourth-order systems. Expert Syst Appl 37(10):6764–6774

    Article  Google Scholar 

  27. Chen Shi-Yuan, Fang-Ming Yu, Chung Hung-Yuan (2002) Decoupled fuzzy controller design with single-input fuzzy logic. Fuzzy Sets Syst 129(3):335–342

    Article  MathSciNet  Google Scholar 

  28. Lo Ji-Chang, Kuo Ya-Hui (1998) Decoupled fuzzy sliding-mode control. IEEE Trans Fuzzy Syst 6(3):426–435

    Article  Google Scholar 

  29. Krafes Soukaina, Chalh Zakaria, Saka Abdelmjid (2018) A review on the control of second order underactuated mechanical systems. Complexity 2018:1–17

    Article  Google Scholar 

  30. Meng Deshan, Wang Xueqian, Wenfu Xu, Liang Bin (2017) Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression. J Sound Vibr 396:30–50

    Article  Google Scholar 

  31. Park Kang-Bark, Tsuji Teruo (1999) Terminal sliding mode control of second-order nonlinear uncertain systems. Int J Robust Nonlinear Control 9(11):769–780

    Article  MathSciNet  Google Scholar 

  32. Xinghuo Yu, Zhihong Man (2002) Fast terminal sliding-mode control design for nonlinear dynamical systems. IEEE Trans Circuits Systems I Fundamental Theory Appl 49(2):261–264

    Article  MathSciNet  Google Scholar 

  33. Feng Yong, Xinghuo Yu, Man Zhihong (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12):2159–2167

    Article  MathSciNet  Google Scholar 

  34. Hernandez-Mendez A, Linares-Flores J, Sira-Ramirez H, Guerrero-Castellanos JF, Mino-Aguilar G (2017) A backstepping approach to decentralized active disturbance rejection control of interacting boost converters. IEEE Trans Ind Appl 99:1

    Google Scholar 

  35. Yao J, Jiao Z, Ma D (2014a) Adaptive robust control of DC motors with extended state observer. IEEE Trans Ind Electr 61(7):3630–3637

    Article  Google Scholar 

  36. Li S, Liu Z (2009) Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Trans Ind Electr 56(8):3050–3059

    Article  Google Scholar 

  37. Yao J, Jiao Z, Ma D (2014b) Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping. IEEE Trans Ind Electr 61(11):6285–6293

  38. Angu Rittu, Mehta RK (2018) A single machine infinite bus power system excitation control design with extended reduced-order observer. Int J Dyn Control 6(3):1272–1286

    Article  Google Scholar 

  39. Ma Jie, Tao Hao, Huang Jingwen (2020) Observer integrated backstepping control for a ball and plate system. Int J Dyn Control. https://doi.org/10.1007/s40435-020-00629-8

    Article  Google Scholar 

  40. Delibasi A, Kucukdemiral IB, and Cansever G (2007) A robust pid like state-feedback control via lmi approach: An application on a double inverted pendulum system. In: 2007 International Symposium on Computational Intelligence in Robotics and Automation, pp 374–379

  41. Quanser Inc. SRV02-Series Rotary Pendulum User Manual, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant N. Pawar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S.N., Chile, R.H. & Patre, B.M. Extended state observer based robust sliding mode control for fourth order nonlinear systems with experimental validation. Int. J. Dynam. Control 9, 1600–1611 (2021). https://doi.org/10.1007/s40435-020-00743-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00743-7

Keywords

Navigation