Skip to main content
Log in

A single machine infinite bus power system excitation control design with extended reduced-order observer

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents an extended reduced-order observer (EROO) in order to improve the stability and voltage regulation of a synchronous machine connected to an infinite bus power system through a transmission line. The EROO-based control scheme is implemented with an automatic voltage regulator to enhance the damping of low frequency power system oscillations, so that the deviations in terminal voltage are reduced. The proposed observer reconstructs the unmeasurable states of the system and state of the disturbance model simultaneous to implement full state feedback and using the estimated disturbance state to compensate the system efficiently in presence of external and parameter uncertainties. The closed-loop poles (CLPs) of the system have been assigned by the symmetric root locus technique, with the desired level of system damping provided by the dominant CLPs. The performance of the system is analyzed through simulating at different operating conditions. The control method is not only capable of providing zero estimation error in steady-state, but also shows robustness in tracking the reference command under parametric variations and external disturbances. Illustrative examples have been provided to demonstrate the effectiveness of the developed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Basler MJ, Schaefer RC (2008) Understanding power system stability. IEEE Trans Ind Appl 44(2):463–474. https://doi.org/10.1109/TIA.2008.916726

    Article  Google Scholar 

  2. Kundur P (1994) Power system stability and control, 7th edn. McGraw-Hill, New York

    Google Scholar 

  3. Stephenson JM, Ula AHMS (1977) Dynamic stability analysis of synchronous machines including damper circuits, automatic voltage regulator and governor. Proc Inst Electr Eng 124(8):681–688. https://doi.org/10.1049/piee.1977.0148

    Article  Google Scholar 

  4. Anderson PM, Fouad AA (2003) Power system control and stability, 6th edn. Wiley-IEEE Press, Piscataway

    Google Scholar 

  5. De Oliveira SEM (1989) Effect of excitation systems and of power system stabilisers on synchronous generator damping and synchronising torques. IEE Proc C Gener Transm Distrib 136(5):264–270. https://doi.org/10.1049/ip-c.1989.0035

    Article  MathSciNet  Google Scholar 

  6. Lachman T, Mohamad TR (2009) Neural network excitation control system for transient stability analysis of power system. In: IEEE Region 10 conference, Singapore, pp 1–6. https://doi.org/10.1109/TENCON.2009.5396242

  7. Demello FP, Concordia C (1969) Concepts of synchronous machine stability as affected by excitation control. IEEE Trans Power Appar Syst 88(4):316–329

    Article  Google Scholar 

  8. Ghany AM Abdel (2008) Power system automatic voltage regulator design based on static output feedback PID using iterative linear matrix inequality. In: 12th IEEE international middle-east power system conference, Aswan, Egypt, pp 441–446. https://doi.org/10.1109/MEPCON.2008.4562396

  9. Gurrala G, Sen I (2010) Power system stabilizers design for interconnected power systems. IEEE Trans Power Syst 2:1042–1051. https://doi.org/10.1109/TPWRS.2009.2036778

    Article  Google Scholar 

  10. Peng Y, Zhu QM, Nouri H (2011) Robust \(\text{H}_{2}\) power system stabilizer design using LMI techniques. In: IEEE international conference on modelling, identification and control, Shanghai, China, pp 405–410. https://doi.org/10.1109/ICMIC.2011.5973739

  11. Canales HT, Torres FC, Chavez JCS (2014) Tuning of power system stabilizer PSS using genetic algorithms. In: IEEE international Autumn meeting on power, electronics and computing, Ixtapa, Mexico, pp 1–6. https://doi.org/10.1109/ROPEC.2014.7036350

  12. Tayal VK, Lather JS (2015) PSO based robust fuzzy power system stabilizer design for single machine infinite bus system. In: IEEE annual India conference, New Delhi, India, pp 1–6. https://doi.org/10.1109/INDICON.2015.7443821

  13. Jagadeesh P, Veerraju MS (2016) Particle swarm optimization based power system stabilizer for SMIB system. In: IEEE international conference on emerging trends in engineering, technology and science, Pudukkottai, India, pp 1–6. https://doi.org/10.1109/ICETETS.2016.7603084

  14. Masrob MA, Rahman MA, George GH, Butt CB (2017) Design of a simple neural network stabilizer for a synchronous machine of power system via MATLAB/Simulink. In: IEEE international electric machines and drives conference, Florida, USA. https://doi.org/10.1109/IEMDC.2017.8002202

  15. Wang GS, Liang B, Tang ZX (2011) A parameterized design of reduced-order state observer in linear control systems. Proc Eng 15:974–978. https://doi.org/10.1016/j.proeng.2011.08.180

    Article  Google Scholar 

  16. Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control 16(6):596–602. https://doi.org/10.1109/TAC.1971.1099826

    Article  MathSciNet  Google Scholar 

  17. Profeta JA, Vogt WG, Mickle MH (1990) Disturbance estimation and compensation in linear systems. IEEE Trans Aerosp Electron Syst 2:225–231. https://doi.org/10.1109/7.53455

    Article  Google Scholar 

  18. Van Dijk J, Coelingh HJ, Schrijver E, de Vries TJA (2000) Design of disturbance observers for the compensation of low frequency disturbances. In: Proceedings of 5th international conference on motion and vibration control, vol 1, pp 75–80

  19. Feliachi A, Zhang X, Sims CS (1988) Power system stabilizers design using optimal reduced order models: Part I—model reduction, Part II—design. IEEE Trans Power Syst 3(4):1670–1684. https://doi.org/10.1109/59.192979

    Article  Google Scholar 

  20. Saleh FA, Mahmoud MS (1995) Design of power system stabilizers using reduced-order models. Electr Power Syst Res 33(3):219–226. https://doi.org/10.1016/0378-7796(95)00949-I

    Article  Google Scholar 

  21. Lee SS, Park JK (1998) Design of reduced order observer-based variable structure power system stabilizer for unmeasurable state variables. IEE Proc Gener Transm Distrib 145(5):525–530. https://doi.org/10.1049/ip-gtd:19982180

    Article  Google Scholar 

  22. Bensenouci A, Ghany AM Abdel (2006) Simulated annealing optimized and neural networks self tuned PID voltage regulator for a single-machine power system. In: IEEE 32nd Industrial Electronics Society, Paris, France, pp 241–246. https://doi.org/10.1109/IECON.2006.347428

  23. Chen WH, Yang J, Guo L, Li S (2016) Disturbance-observer-based control and related methods: an overview. IEEE Trans Ind Electron 63(2):1083–1095. https://doi.org/10.1109/TIE.2015.2478397

    Article  Google Scholar 

  24. Schrijver E, Van Dijk J (2002) Disturbance observers for rigid mechanical systems: equivalence, stability and design. ASME J Dyn Syst Measur Control 124:539–548. https://doi.org/10.1115/1.1513570

    Article  Google Scholar 

  25. Angu R, Mehta RK (2017) A single machine infinite bus power system damping control design with extended state observer. Cogent Eng 4(1):1–19. https://doi.org/10.1080/23311916.2017.1369923

    Article  Google Scholar 

  26. Franklin GF, Powell JD, Emami-Naeini A (2006) Feedback control of dynamic systems, 6th edn. Pearson Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  27. Kailath T (1980) Linear systems. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  28. Gupta SD (1975) Control system theory: a textbook for engineering students, 2nd edn. Khanna publishers, New Delhi

    Google Scholar 

  29. Goswami SK, Datta K (2005) On estimation errors in linear system due to parametric variations. J Inst Eng (India) 86:192–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rittu Angu.

Appendices

Appendix A: Power system data

Parameter

Value

Line impedance, \(\hbox {R}_{\mathrm{e}}+\hbox {jX}_{\mathrm{e}}\)

\(0.02+j0.40\)

D-axis reactance, \(\hbox {x}_{\mathrm{d}}\)

1.70

Q-axis reactance, \(\hbox {x}_{\mathrm{q}}\)

1.64

Armature resistance, r

0.001096

Infinite bus voltage, V

1.00

Inertia constant, \(\hbox {H}^{{\prime }}\)

2.37

Rated speed, \(\omega _{0}\)

314.1593 rad/s

Field circuit time constant, \(\tau ^{{\prime }}_{\mathrm{do}}\)

8 s

Damping factor, \(\hbox {K}_{\mathrm{D}}\)

0

Regulator gain, \(\hbox {K}_{\mathrm{A}}\)

50

Exciter time constant, \(\tau _{\mathrm{E}}\)

0.5

Exciter gain, \(\hbox {K}_{\mathrm{E}}\)

\(-\) 0.05

Effective field time constant, \(\tau _{3}\)

2.4576

Appendix B: Coefficients of observer system

$$\begin{aligned}&\left. {\begin{array}{l} {a}_{{21}} {t}_{{12}} -{ t}_{{21}} +{ a}_{{31}} {t}_{{13}} +{ a}_{{41}} {t}_{{14}} =K_5 \\ {a}_{{22}} {t}_{{12}} -{ t}_{{22}} +{ a}_{{32}} {t}_{{13}} +{ a}_{{42}} {t}_{{14}} =K_6 \\ {a}_{{23}} {t}_{{12}} -{ t}_{{23}} +{ a}_{{33}} {t}_{{13}} ={ }0 \\ {a}_{{44}} {t}_{{14}} -{ t}_{{24}} +{ t}_{{11}} \omega _{{0 }} ={ }0{ } \\ {b}_{{13}} {t}_{{13}} -{ t}_{{25}} =0 \\ {a}_{{21}} {t}_{{22}} -{ t}_{{31}} +{ a}_{{31}} {t}_{{23}} +{ a}_{{41}} {t}_{{24}} =0 \\ {a}_{{22}} {t}_{{22}} -{ t}_{{32}} +{ a}_{{32}} {t}_{{23}} +{ a}_{{42}} {t}_{{24}} =0 \\ {a}_{{23}} {t}_{{22}} -{ t}_{{33}} +{ a}_{{33}} {t}_{{23}} ={ }0{ } \\ {a}_{{44}} {t}_{{24}} -{ t}_{{34}} +{ t}_{{21}} \omega _{0} ={ }0 { } \\ {b}_{{13}} {t}_{{23}} -{ t}_{{35}} =0 \\ {a}_{{21}} {t}_{{32}} +{ a}_{{31}} {t}_{{33}} +{ a}_{{41}} {t}_{{34}} +{ d}_{0} {t}_{{11}} +{ d}_{1} {t}_{{21}} +{ d}_{2} {t}_{{31}} =0 \\ {a}_{{22}} {t}_{{32}} +{ a}_{{32}} {t}_{{33}} +{ a}_{{42}} {t}_{{34}} +{ d}_{0} {t}_{{12}} +{ d}_{1} {t}_{{22}} +{ d}_{2} {t}_{{32}} =0 \\ {a}_{{23}} {t}_{{32}} +{ a}_{{33}} {t}_{{33}} +{ d}_{0} {t}_{{13}} +{ d}_{1} {t}_{{23}} +{ d}_{2} {t}_{{33}} =0 \\ {a}_{{44}} {t}_{{34}} +{ d}_{0} {t}_{{14}} +{ d}_{1} {t}_{{24}} +{ d}_{2} {t}_{{34}} +{ t}_{{31}} \omega _{0} ={ }0 \\ {b}_{{13}} {t}_{{33}} +{ d}_{0} {t}_{{15}} +{ d}_{1} {t}_{{25}} +{ d}_{2} {t}_{{35}} =0 \\ \end{array}} \right\} \quad \hbox {T-matrices for Eq}.~(28) \\&\left. {\begin{array}{l} {a}_{{o3}} = -{ h}_{{11}} \\ {a}_{{o2}} ={K}_{5} {m}_{{11}} -{ d}_{2} {h}_{{11}} \\ {a}_{{o1}} ={K}_{5} {d}_{2} {m}_{{11}} -{ K}_{5} {d}_{0} {m}_{{13}} -{ d}_{1} {h}_{{11}} \\ {a}_{{o0}} = -{ d}_{0} {h}_{{11}} -{ K}_{5} {d}_{0} {m}_{{12}} +{ K}_{5} {d}_{1} {m}_{{11}} \\ {b}_{{o3}} = -{ h}_{{12}} \\ {b}_{{o2}} ={K}_{6} {m}_{{11}} -{ d}_{2} {h}_{{12}} \\ {b}_{{o1}} ={K}_{6} {d}_{2} {m}_{{11}} -{ K}_{6} {d}_{0} {m}_{{13}} -{ d}_{1} {h}_{{12}} \\ {b}_{{o0}} = -{ d}_{0} {h}_{{12}} -{ K}_{6} {d}_{0} {m}_{{12}} +{ K}_{6} {d}_{1} {m}_{{11}} \\ {c}_{{o2}} ={(K}_{A} {m}_{{11}} {t}_{{13}} +{ K}_{A} {m}_{{12}} {t}_{{23}} +{ K}_{A} {m}_{{13}} {t}_{{33}} {)/}\tau _{E} \\ {c}_{{o1}} ={(K}_{A} {m}_{{11}} {t}_{{23}} +{ K}_{A} {m}_{{12}} {t}_{{33}} -{ K}_{A} {d}_{0} {m}_{{13}} {t}_{{13 }} +{ K}_{A} {d}_{2} {m}_{{11}} {t}_{{13}} \\ \quad \quad \quad -{ K}_{A} {d}_{1} {m}_{{13}} {t}_{{23 }} +{ K}_{A} {d}_{2} {m}_{{12}} {t}_{{23}} {)/}\tau _{E} \\ {c}_{{o0}} ={(K}_{A} {m}_{{11}} {t}_{{33}} -{ K}_{A} {d}{ }_{0}{m}_{{12}} {t}_{{13 }} +{ K}_{A} {d}_{1} {m}_{{11}} {t}_{{13}} -{ K}_{A} {d}_{0} {m}_{{13}} {t}{ }_{{23}} \\ \quad \quad \quad +{ K}_{A} {d}_{2} {m}_{{11}} {t}_{{23}} {)/}\tau _{E} \\ \end{array}} \right\} \quad \hbox {Coefficients of Eq}.~(38) \\&\left. {\begin{array}{l} {d}_{{o3}} = -{ h}_{{21}} \\ {d}_{{o2}} ={K}_{5} {m}_{{21}} -{ d}_{2} {h}_{{21}} \\ {d}_{{o1}} ={K}_{5} {d}_{2} {m}_{{21 }} -{ K}_{5} {d}_{0} {m}_{{23}} -{ d}_{1} {h}_{{21}} \\ {d}_{{o0}} = -{ d}_{0} {h}_{{21}} -{ K}_{5} {d}_{0} {m}_{{22}} +{ K}_{5} {d}_{1} {m}_{{21}} \\ {e}_{{o3}} = -{ h}{ }_{{22}} \\ {e}_{{o2}} ={K}_{6} {m}_{{21}} -{ d}_{2} {h}_{{22}} \\ {e}_{{o1}} ={K}_{6} {d}_{2} {m}_{{21}} -{ K}_{6} {d}_{0} {m}_{{23}} -{ d}_{1} {h}_{{22}} \\ {e}_{{o0}} = -{ d}_{0} {h}_{{22}} -{ K}_{6} {d}_{0} {m}_{{22}} +{ K}_{6} {d}_{1} {m}_{{21}} \\ {f}_{{o2}} ={(K}_{_{A} } {m}{ }_{{21}}{t}_{{13}} +{ K}_{A} {m}_{{22}} {t}_{{23}} +{ K}_{A} {m}_{{23}} {t}_{{33}} {)/}\tau _{E} \\ {f}_{{o1}} ={(K}_{A} {m}_{{21}} {t}_{{23 }} +{ K}_{A} {m}_{{22}} {t}_{{33 }} -{ K}_{A} {d}_{0} {m}_{{23}} {t}_{{13}} \\ \quad \quad \quad +{ K}_{A} {d}_{2} {m}_{{21}} {t}_{{13}} -{ K}_{A} {d}_{1} {m}_{{23}} {t}_{{23}} +{ K}_{A} {d}_{2} {m}_{{22}} {t}_{{23}} {)/}\tau _{E} \\ {f}_{{o0}} ={(K}_{A} {m}_{{21}} {t}_{{33}} -{ K}_{A} {d}_{0} {m}_{{22}} {t}_{{13}} +{ K}_{A} {d}_{1} {m}_{{21}} {t}_{{13}} -{ K}_{A} {d}_{0} {m}_{{23}} {t}_{{23}} \\ \quad \quad \quad +{ K}_{A} {d}_{2} {m}_{{21}} {t}_{{23}} {)/}\tau _{E} \\ \end{array}} \right\} \quad \hbox {Coefficients of Eq}.~(39) \end{aligned}$$
$$\begin{aligned}&\left. {\begin{array}{l} {g}_{{o3}} = -{ h}_{{31}} \\ {g}_{{o2}} ={K}_{5} {m}_{{31}} -{ d}_{2} {h}_{{31}} \\ {g}_{{o1}} ={K}_{5} {d}_{2} {m}_{{31}} -{ K}_{5} {d}_{0} {m}_{{33}} -{ d}_{1} {h}_{{31}} \\ {g}_{{o0}} = -{ d}_{0} {h}_{{31}} -{ K}_{5} {d}_{0} {m}_{{32}} +{ K}_{5} {d}_{1} {m}_{{31}} \\ {h}_{{o3}} = -{ h}_{{32}} \\ {h}_{{o2}} ={K}_{6} {m}_{{31}} -{ d}_{2} {h}_{{32}} \\ {h}_{{o1}} ={K}_{6} {d}_{2} {m}_{{31}} -{ K}_{6} {d}_{0} {m}_{{33}} -{ d}_{1} {h}_{{32}} \\ {h}_{{o0}} = -{ d}_{0} {h}_{{32}} -{ K}_{6} {d}_{0} {m}_{{32}} +{ K}_{6} {d}_{1} {m}_{{31}} \\ {i}_{{o2}} ={(K}_{A} {m}_{{31}} {t}_{{13 }} +{ K}_{A} {m}_{{32}} {t}_{{23}} +{ K}_{A} {m}_{{33}} {t}_{{33}} {)/}\tau _{E} \\ {i}_{{o1}} ={(K}_{A} {m}_{{31}} {t}_{{23}} +{ K}_{A} {m}_{{32}} {t}_{{33}} -{ K}_{A} {d}_{0} {m}_{{33}} {t}_{{13}} +{ K}_{A} {d}_{2} {m}_{{31}} {t}_{{13}} \\ \quad \quad \quad -{ K}_{A} {d}_{1} {m}_{{33}} {t}_{{23 }} +{ K}_{A} {d}_{2} {m}_{{32}} {t}_{{23}} {)/}\tau _{E} \\ {i}_{{o0}} ={(K}_{A} {m}_{{31}} {t}_{{33}} -{ K}_{A} {d}_{0} {m}_{{32}} {t}_{{13}} +{ K}_{A} {d}_{1} {m}_{{31}} {t}_{{13}} -{ K}_{A} {d}_{0} {m}_{{33}} {t}_{{23 }} \\ \quad \quad \quad +{ K}_{A} {d}_{2} {m}_{{31}} {t}_{{23}} {)/}\tau _{E} \\ \end{array}} \right\} \quad \hbox {Coefficients of Eq}.~(40) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angu, R., Mehta, R.K. A single machine infinite bus power system excitation control design with extended reduced-order observer. Int. J. Dynam. Control 6, 1272–1286 (2018). https://doi.org/10.1007/s40435-017-0360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0360-4

Keywords

Navigation