Skip to main content
Log in

Solving propeller optimization problems by using helical vortex and exact penalty methods

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An alternative procedure of finding a propeller's optimal circulation distribution and geometry is presented. The method uses a helical vortex model for aerodynamic calculations and an exact penalty method to formulate the constrained optimization problem as an unconstrained nonlinear programming problem. An example case for optimal circulation distribution from the literature was used for comparison. The method showed a good fit with the exact solutions, namely the inviscid and the infinite number of blades cases. For the general case considering the viscosity and a finite number of blades, the model performed better than the benchmarks blade element momentum methods. The geometry was also optimized, and the geometric twist and chord distribution were calculated for the general case, for a given twist or chord distribution and for a given activity factor, increasing in 4% to 6% the efficiency when compared to the geometries available on the references for all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({V}_{\infty }\) :

Freestream velocity

\(\Omega\) :

Angular velocity

\(W\) :

Resultant velocity

\({u}_{\theta }, {u}_{z}\) :

Tangential and axial induced velocity

\(u\) :

Wake velocity

\(v\) :

Slipstream velocity

\(\lambda\) :

Tip–speed ratio

\(d\) :

Propeller diameter

\(R\) :

Propeller radius

\(r\) :

Radial position

\(\mu\) :

Non-dimensional radial position

\(\beta\) :

Blade twist angle

\(\alpha , {\alpha }_{e}\) :

Geometric and effective angle of attack

\(\phi\) :

Wake angle

\(B\) :

Number of blades

\(c\) :

Chord length

\({a}_{0}\) :

\(d{C}_{L}/d\alpha\)

\(\sigma\) :

Blade solidity

\(\mathrm{AF}\) :

Activity factor

\(\rho\) :

Air density@@@

\(\xi\) :

\({C}_{D}/{C}_{L}\)

\(a\) :

Ritz coefficients

\(f\) :

Ritz functions

\(\eta\) :

Propeller efficiency

THP:

Thrust horsepower

BHP:

Brake horsepower

\({C}_{T}\) :

Thrust coefficient

\({C}_{P}\) :

Power coefficient

\({C}_{L}\) :

Lift coefficient

\({C}_{D}\) :

Drag coefficient

\(T\) :

Thrust

\({F}_{\theta }\) :

Tangential force

\(P\) :

Power

\(L\) :

Lift

\(D\) :

Drag

\(Q\) :

Torque

\(\Gamma\) :

Circulation

\(A\) :

Influence matrix

A′:

Kawada coefficients

\(M\) :

Morrison parameter

\(\delta\) :

Discriminant

\(\varepsilon\) :

Auxiliary variable

\({S}_{1}, {S}_{2}\) :

Auxiliary variables

\(K,K\mathrm{^{\prime}}\) :

Auxiliary variables

\(k,k\mathrm{^{\prime}}\) :

Auxiliary variables

\(I(\cdot ), K(\cdot )\) :

Modified Bessel functions

References

  1. Alves P, Silvestre M, Gamboa P (2020) Aircraft propellers—is there a future? Energies. https://doi.org/10.3390/en13164157

    Article  Google Scholar 

  2. Okulov VL, Sørensen JN, Wood DH (2015) Rotor theories by professor Joukowsky: vortex theories. Prog Aerosp Sci 73:19–46. https://doi.org/10.1016/j.paerosci.2014.10.002

    Article  Google Scholar 

  3. Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Lond A 123(792):440–465. https://doi.org/10.1098/rspa.1929.0078

    Article  MATH  Google Scholar 

  4. Durand WF(1935) Aerodynamic theory. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-91487-4

  5. Theodorsen T (1954) Theory of propellers, apresentado em Skipsmodelltankens meddelelse, Trondheim, vol 33

  6. Wald QR (2006) The aerodynamics of propellers. Prog Aerosp Sci 42(2):85–128. https://doi.org/10.1016/j.paerosci.2006.04.001

    Article  MathSciNet  Google Scholar 

  7. Lock CNH, Yeatman D (1934) Tables for use in an improved method of airscrew strip theory calculation

  8. Tibery CL, Wrench J, J W (1964) Tables of the Goldstein factor, defense technical information center, Fort Belvoir, VA, dez. https://doi.org/10.21236/AD0610171

  9. Zhong J, Li J (2020) Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil. Energy 206:118182. https://doi.org/10.1016/j.energy.2020.118182

    Article  Google Scholar 

  10. Shen WZ, Mikkelsen R, Sørensen JN, Bak C (2005) Tip loss corrections for wind turbine computations. Wind Energ 8(4):457–475. https://doi.org/10.1002/we.153

    Article  Google Scholar 

  11. Larrabee E (1979) Design of propellers for motorsoarers, NASA. Langley Res. Center The Sci. and Technol. of Low Speed and Motorless Flight, Pt. 1, pp 285–303. https://ntrs.nasa.gov/citations/19790015732

  12. Adkins CN, Liebeck RH (1994) Design of optimum propellers. J Propuls Power 10(5):676–682. https://doi.org/10.2514/3.23779

    Article  Google Scholar 

  13. Prandtl L, Betz A (2010) Vier Abhandlungen zur Hydrodynamik und Aerodynamik. (Flüssigkeit mit kleiner Reibung; Tragflügeltheorie, I. und II. Mitteilung; Schraubenpropeller mit geringstem Energieverlust). https://doi.org/10.17875/gup2010-106

  14. KAWADA e 河田三治 S (2020) Calculation of induced velocity by helical vortices and its application to propeller theory, janeiro de 1939. https://repository.exst.jaxa.jp/dspace/handle/a-is/5487 (acessado 2 de março de 2020)

  15. Park Y-M, Kim B-S (2011) The calculation of propeller thrust using semi-infinite helical vortices and a wind tunnel test. J Korean Soc Aeronaut Space Sci 39(9):816–822. https://doi.org/10.5139/JKSAS.2011.39.9.816

    Article  Google Scholar 

  16. Klesa J (2014) Optimal circulation distribution on propeller with the influence of viscosity. em 32nd AIAA applied aerodynamics conference, Atlanta, GA. https://doi.org/10.2514/6.2014-3132

  17. Keith TG, White JA (1985) Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory volume 2: computer program

  18. Keith TG, White, Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory Volume 1: theory. Acessado: 29 de janeiro de 2022. [Online]. Disponível em: https://ia600302.us.archive.org/25/items/nasa_techdoc_19850021604/19850021604.pdf

  19. Wood DH (2020) Helical vortices and wind turbine aerodynamics. Int J Math Ind 12(01):2050002. https://doi.org/10.1142/S2661335220500021

    Article  MathSciNet  MATH  Google Scholar 

  20. Okulov VL, Fukumoto Y (2022) Review of analytical approaches for simulating motions of helical vortex. Front Energy Res 10:817941. https://doi.org/10.3389/fenrg.2022.817941

    Article  Google Scholar 

  21. Abraham A, Castillo-Castellanos A, Leweke T (2023) Simplified model for helical vortex dynamics in the wake of an asymmetric rotor. Flow 3:E5. https://doi.org/10.1017/flo.2022.33

    Article  Google Scholar 

  22. Broz V (1967) Aerodynamic design of a highly efficient propeller blade. NASA, Washington

    Google Scholar 

  23. Wood DH, Okulov VL, Bhattacharjee D (2016) Direct calculation of wind turbine tip loss. Renew Energy 95:269–276. https://doi.org/10.1016/j.renene.2016.04.017

    Article  Google Scholar 

  24. Dorfling J, Rokhsaz K (2015) Constrained and unconstrained propeller blade optimization. J Aircr 52(4):1179–1188. https://doi.org/10.2514/1.C032859

    Article  Google Scholar 

  25. Bertsekas DP (1975) Necessary and sufficient conditions for a penalty method to be exact. Math Programm 9(1):87–99. https://doi.org/10.1007/BF01681332

    Article  MathSciNet  MATH  Google Scholar 

  26. Morrison DD (1968) Optimization by least squares. SIAM J Numer Anal 5(1):83–88. https://doi.org/10.1137/0705006

    Article  MathSciNet  MATH  Google Scholar 

  27. Hardin JC (1982) The velocity field induced by a helical vortex filament. Phys Fluids 25(11):1949–1952. https://doi.org/10.1063/1.863684

    Article  MATH  Google Scholar 

  28. Fukumoto Y, Okulov VL, e D. H. Wood, (2017) The contribution of kawada to the analytical solution for the velocity induced by a helical vortex filament and modern applications of helical vortices. Math Anal Contin Mech Ind Appl 26:167–174. https://doi.org/10.1007/978-981-10-2633-1_12

    Article  MathSciNet  Google Scholar 

  29. Watson GN (1966) A treatise on the theory of bessel functions, 2 (ed) Cambridge University Press

  30. Boersma J, Wood DH (1999) On the self-induced motion of a helical vortex. J Fluid Mech 384:263–279. https://doi.org/10.1017/S002211209900422X

    Article  MathSciNet  MATH  Google Scholar 

  31. Okulov VL, Sørensen JN (2010) Applications of 2D helical vortex dynamics. Theor Comput Fluid Dyn 24(1–4):395–401. https://doi.org/10.1007/s00162-009-0136-3

    Article  MATH  Google Scholar 

  32. Durán Venegas E, Le Dizès S (2019) Generalized helical vortex pairs. J Fluid Mech 865:523–545. https://doi.org/10.1017/jfm.2019.65

    Article  MathSciNet  MATH  Google Scholar 

  33. Velasco Fuentes O (2018) Motion of a helical vortex. J Fluid Mech 836:R1. https://doi.org/10.1017/jfm.2017.845

    Article  MathSciNet  MATH  Google Scholar 

  34. Okulov VL (2004) On the stability of multiple helical vortices. J Fluid Mech 521:319–342. https://doi.org/10.1017/S0022112004001934

    Article  MathSciNet  MATH  Google Scholar 

  35. Torrigiani F, Dipace A, Frediani A (2016) Variational approach to the problem of the optimal propeller design. Aerotec Missili Spaz 95(1):13–23. https://doi.org/10.1007/BF03404710

    Article  Google Scholar 

  36. Viterna LA, Janetzke DC (1982) Theoretical and experimental power from large horizontal-axis wind turbines, National aeronautics and space administration, Cleveland, OH (USA). Lewis research center, DOE/NASA/20320–41; NASA-TM-82944. https://doi.org/10.2172/6763041

  37. Du Z, Selig MS (2000) The effect of rotation on the boundary layer of a wind turbine blade. Renew Energy 20(2):167–181. https://doi.org/10.1016/S0960-1481(99)00109-3

    Article  Google Scholar 

  38. Tangler J, Selig MS (1997) An evaluation of an empirical model for stall delay due to rotation for HAWTS, p 12

  39. Xiang S, Liu Y, Tong G, Zhao W, Tong S, Li Y (2018) An improved propeller design method for the electric aircraft. Aerosp Sci Technol 78:488–493. https://doi.org/10.1016/j.ast.2018.05.008

    Article  Google Scholar 

  40. Roskam J, Lan E (1997) Airplane aerodynamics and performance. DAR CORP

  41. Larrabee EE (1979) Practical design of minimum induced loss propellers. SAE international, Warrendale, PA, SAE technical paper 790585. https://doi.org/10.4271/790585

  42. Okulov V (2011) Development of helical vortex theory. In: EUROMECH colloquium 525—instabilities and transition in three-dimensional flows with rotation, Ecully, France, p 4. [Online]. Disponível em: https://hal.archives-ouvertes.fr/hal-00600414

  43. Weick F (1930) Aicraft propeller design. McGraw-Hill

  44. Hartman EP, Bierman D (1939) Report no. 640, the aerodynamic characteristics of full-scale propellers having 2, 3, and 4 blades of Clark Y and R. A. F. 6 Airfoil sections. J Franklin Inst 227(4):580–581. https://doi.org/10.1016/S0016-0032(39)90756-8

    Article  Google Scholar 

  45. Li KO, Chang; John P. Sullivan, (1984) Optimization of propeller blade twist by an analytical method. AIAA J 22(2):252–255. https://doi.org/10.2514/3.48441

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Azevedo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azevedo, D., Reis, J.L.C. & Pinto, R.L.U.d.F. Solving propeller optimization problems by using helical vortex and exact penalty methods. J Braz. Soc. Mech. Sci. Eng. 45, 374 (2023). https://doi.org/10.1007/s40430-023-04258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04258-y

Keywords

Navigation