Skip to main content

Variational Analysis and Euler Equation of the Optimum Propeller Problem

  • Chapter
  • First Online:
Variational Analysis and Aerospace Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 116))

  • 1511 Accesses

Abstract

The problem of the optimum propeller with straight blades was first solved by Goldstein; in this paper, a variational formulation is proposed in order to extend the solution to non-planar blades. First, we find a class of functions (the circulation along the blade axis) for which the thrust and the aerodynamic drag moment are well defined. In this class, the objective functional is proved to be strictly convex and then the global minimum exists and is unique. Then we determine the Euler equation in the case of a general blade and show that the numerical results are consistent with the Goldstein’s solution. Finally, some numerical results with the Ritz method are presented for optimum propeller blades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that, from Fig. 2, cosφ 0∕sinφ 0 = Ω rV , the same expression of w n is obtained also if the helicoids rotate with angular velocity \(\overline{w}_{0}\varOmega /V _{\infty }\).

  2. 2.

    The induced velocity in the far wake is the double of the one near the rotor; this result is usually known as the Froude theorem.

  3. 3.

    r corresponds to the module of position vector only for plain blades in the plane (y, z); in this case, we have r ×e θ  = r i.

  4. 4.

    Note that the factor \(\frac{t^{{\ast}}} {2}\) is needed just to make dimensionless the integration set on t.

  5. 5.

    See p.768 of [11].

  6. 6.

    Goldstein shows the results just for a two- and a four-bladed propeller; for higher number of blades we refer to [17].

  7. 7.

    As done in [18].

  8. 8.

    The presence of an indefinite integral is not a problem. Note that for t →  we have x v → , while y v and z v are limited. This means for t →  we have g x (t, ξ, η) → 0 as 1∕(x v)3, while g y (t, ξ, η) and g z (t, ξ, η) → 0 as 1∕(x v)2.

  9. 9.

    Because for (t, ξ) = (0, η) the denominator is null. The square root gives no problems of singularity, because its argument is a distance, that is always non-negative.

  10. 10.

    We use the standard integration rule \(\int \frac{\mathrm{d}t} {\left (a^{2}+t^{2}\right )^{3/2}} = \frac{t} {a^{2}\sqrt{a^{2 } +t^{2}}}\).

  11. 11.

    From now on the procedure is very similar to the one used in [12] Appendix 1.

  12. 12.

    See Appendix 1 of [12].

References

  1. Betz, A., Prandtl, L.: Schraubenpropeller mit geringstem Energieverlust. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 193–217 (1919)

    Google Scholar 

  2. Chattot, J.J.: Optimization of propellers using helicoidal vortex model. Comput. Fluid Dyn. J. 9, (2000)

    Google Scholar 

  3. Demasi. L., Dipace, A., Monegato, G., Cavallaro, R.: An Invariant formulation for the minimum induced drag conditions of non-planar wing systems. AIAA J 52, 2223–2240 (2014)

    Google Scholar 

  4. Dorfling, J., Rokhsaz, K.: Constrained and unconstrained propeller blade optimization. AIAA J 52 (2015)

    Google Scholar 

  5. Elsgolc, L.E.: Calculus of Variation. Pergamon Press, Oxford (1961)

    MATH  Google Scholar 

  6. Froude, W.: On the elementary relation between pitch, slip and propulsive efficiency. Trans. Ist. Nav. Archit. 19, 47 (1878)

    Google Scholar 

  7. Glauert, H.: Airplane propellers. In: Durand, W.F. (ed.) Aerodynamic Theory. Julius Springer, Berlin (1935)

    Google Scholar 

  8. Goldstein, S.: On the vortex theory of screw propellers. Proc. R Soc. Lond. (1929). Doi: 10.1098/rspa.1929.0078

    MATH  Google Scholar 

  9. Joukowsky, N.Y.: Theorie Turbillonnaire de l’hélice Propulsive. Guathier-Villars, Paris (1929)

    Google Scholar 

  10. Larrabea, E.: The screw propeller. Sci. Am. 243, 134–148 (1980)

    Google Scholar 

  11. Monegato, G.: The numerical evaluation of a 2-D Cauchy principal value integral arising in boundary integral equation methods. Math. Comp. (1994). doi: 10.2307/2153536

    MathSciNet  MATH  Google Scholar 

  12. Panaro, M.T., Frediani, A., Giannessi, F., Rizzo, E.: Variational approach to the problem of the minimum induced drug of wings. In: Buttazzo, G., Frediani, A. (eds.) Variational Analysis and Aerospace Engineering. Springer, New York (2009)

    Google Scholar 

  13. Pistolesi, E.: La Teoria dei vortici in aerodinamica. L’Aeronautica IV (1921)

    Google Scholar 

  14. Pistolesi, E.: Aerodinamica. UTET, Torino (1932)

    MATH  Google Scholar 

  15. Rankine, W.J.M.: On the mechanical principles of the action of propellers. Trans. Ist. Nav. Archit. 6, 13 (1865)

    Google Scholar 

  16. Theodorsen, T.: Theory of Propellers. McGraw-Hill, New York (1948)

    MATH  Google Scholar 

  17. Tibery, C.L., Wrench, J.W. Jr.: Tables of Goldstein Factor. David Taylor Model Basin, Washington DC (1964)

    Google Scholar 

  18. Tricomi, F.G.: Equazioni integrali contenenti il valor principale di un integrale doppio. In: Lichtenstein L (ed) Mathematische Zeitschrift. Springer, Berlin (1928)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Torrigiani .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Singular Part of the Kernel

To obtain the singular part of the kernel is important for two reasons. First, the complete expression of the kernel is too complex to allow an analysis of existence, we study just the singular part (see Appendix 2). Furthermore, we have to demonstrate that the singularity is a second order pole in order to use the Monegato’s quadrature rule (see Sect. 5). The expression of the kernel, as defined in Sect. 5.1 by Eq. (30), is

$$\displaystyle{ \mathbf{g}_{i}(t,\xi,\eta ):= \frac{\mathrm{d}\mathbf{r}_{i}^{v}(t)} {\mathrm{d}t} \times \frac{\mathbf{r}(\eta ) -\mathbf{r}_{i}^{v}(t,\xi )} {\left \Vert \mathbf{r}(\eta ) -\mathbf{r}_{i}^{v}(t,\xi )\right \Vert ^{3}}\;, }$$

where i is the origin blade of the helicoidal wake. For i = 0 the blade is the same where we calculate the induced velocity. Therefore we have a singularity in (t, ξ) = (0, η), because

$$\displaystyle{ \lim _{\left (t,\xi \right )\rightarrow \left (0,\eta \right )}\mathbf{r}_{0}^{v}(t,\xi ) = \mathbf{r}(\eta )\;. }$$

We take into account just the kernel g 0(t, ξ, η) (from now on the subscript0 is dropped for simplicity), its components are

$$\displaystyle{ \left \{\begin{array}{rl} g_{x}(t,\xi,\eta ) = \frac{\left (z(\eta )-z^{v}(t,\xi )\right )y,_{ t}^{v}(t,\xi )-\left (y(\eta )-y^{v}(t,\xi )\right )z,_{ t}^{v}(t,\xi )} {\left \vert \left (x(\eta )-x^{v}(t,\xi )\right )^{2}+\left (y(\eta )-y^{v}(t,\xi )\right )^{2}+\left (z(\eta )-z^{v}(t,\xi )\right )^{2}\right \vert ^{3/2}} \\ g_{y}(t,\xi,\eta ) = \frac{\left (x(\eta )-x^{v}(t,\xi )\right )z,_{ t}^{v}(t,\xi )-\left (z(\eta )-z^{v}(t,\xi )\right )x,_{ t}^{v}(t,\xi )} {\left \vert \left (x(\eta )-x^{v}(t,\xi )\right )^{2}+\left (y(\eta )-y^{v}(t,\xi )\right )^{2}+\left (z(\eta )-z^{v}(t,\xi )\right )^{2}\right \vert ^{3/2}} \\ g_{z}(t,\xi,\eta ) = \frac{\left (y(\eta )-y^{v}(t,\xi )\right )x,_{ t}^{v}(t,\xi )-\left (x(\eta )-x^{v}(t,\xi )\right )y,_{ t}^{v}(t,\xi )} {\left \vert \left (x(\eta )-x^{v}(t,\xi )\right )^{2}+\left (y(\eta )-y^{v}(t,\xi )\right )^{2}+\left (z(\eta )-z^{v}(t,\xi )\right )^{2}\right \vert ^{3/2}}\\ \end{array} \right.\;. }$$

We analyse just the z component, for the other is nearly the same. We need the following Taylor expansions around the singularity.

$$\displaystyle{ \left \{\begin{array}{rl} &x^{v}(t,\xi ) = x(\eta ) + t\left.x,_{t}^{v}\right \vert _{(0,\eta )} + (\xi -\eta )\left.x,_{\xi }^{v}\right \vert _{(0,\eta )} + \mathcal{O}(t^{2} + (\xi -\eta )^{2}) \\ &y^{v}(t,\xi ) = y(\eta ) + t\left.y,_{t}^{v}\right \vert _{(0,\eta )} + (\xi -\eta )\left.y,_{\xi }^{v}\right \vert _{(0,\eta )} + \mathcal{O}(t^{2} + (\xi -\eta )^{2}) \end{array} \right. }$$
$$\displaystyle{ \left \{\begin{array}{rl} &x,_{t}^{v}(t,\xi ) = \left.x,_{t}^{v}\right \vert _{(0,\eta )} + t\left.x,_{tt}^{v}\right \vert _{(0,\eta )} + (\xi -\eta )\left.x,_{\xi t}^{v}\right \vert _{(0,\eta )} + \mathcal{O}(t^{2} + (\xi -\eta )^{2}) \\ &y,_{t}^{v}(t,\xi ) = \left.y,_{t}^{v}\right \vert _{(0,\eta )} + t\left.y,_{tt}^{v}\right \vert _{(0,\eta )} + (\xi -\eta )\left.y,_{\xi t}^{v}\right \vert _{(0,\eta )} + \mathcal{O}(t^{2} + (\xi -\eta )^{2})\end{array} \right. }$$

We move to polar coordinates around the singularityFootnote 7

$$\displaystyle{ \left \{\begin{array}{rl} & t = r\cos \theta \\ &\xi -\eta = r\sin \theta \end{array} \right. }$$

and the Taylor expansions become

$$\displaystyle{ \left \{\begin{array}{rl} &x^{v}(r,\theta ) = x(\eta ) + \left.x,_{t}^{v}\right \vert _{(0,\eta )}r\cos \theta + \left.x,_{\xi }^{v}\right \vert _{(0,\eta )}r\sin \theta + \mathcal{O}(r^{2}) \\ &y^{v}(r,\theta ) = y(\eta ) + \left.y,_{t}^{v}\right \vert _{(0,\eta )}r\cos \theta + \left.y,_{\xi }^{v}\right \vert _{(0,\eta )}r\sin \theta + \mathcal{O}(r^{2}) \end{array} \right.\;, }$$
$$\displaystyle{ \left \{\begin{array}{rl} &x,_{t}^{v}(r,\theta ) = \left.x,_{t}^{v}\right \vert _{(0,\eta )} + \left.x,_{tt}^{v}\right \vert _{(0,\eta )}r\cos \theta + \left.x,_{\xi t}^{v}\right \vert _{(0,\eta )}r\cos \theta + \mathcal{O}(r^{2}) \\ &y,_{t}^{v}(r,\theta ) = \left.y,_{t}^{v}\right \vert _{(0,\eta )} + \left.y,_{tt}^{v}\right \vert _{(0,\eta )}r\cos \theta + \left.y,_{\xi t}^{v}\right \vert _{(0,\eta )}r\sin \theta + \mathcal{O}(r^{2})\end{array} \right.\;. }$$

In order to clarify the calculation we define the functions at the numerator and at the denominator of g z :

$$\displaystyle{ g_{z}(r,\theta,\eta ) = \frac{\mathfrak{N}(t,\xi,\eta )} {\mathfrak{D}(t,\xi,\eta )}\;, }$$

where

$$\displaystyle\begin{array}{rcl} & & \mathfrak{N}(r,\theta,\eta ) = \left (y(\eta ) - y^{v}(t,\xi )\right )x,_{ t}^{v}(t,\xi ) -\left (x(\eta ) - x^{v}(t,\xi )\right )y,_{ t}^{v}(t,\xi ), {}\\ & & \mathfrak{D}(r,\theta,\eta ) = \left \vert \left (x(\eta ) - x^{v}(t,\xi )\right )^{2} + \left (y(\eta ) - y^{v}(t,\xi )\right )^{2} + \left (z(\eta ) - z^{v}(t,\xi )\right )^{2}\right \vert ^{3/2}\;. {}\\ \end{array}$$

For the terms of \(\mathfrak{N}\) we have

$$\displaystyle\begin{array}{rcl} & & \left (x(\eta ) - x^{v}(t,\xi )\right )y,_{ t}^{v}(t,\xi ) = {}\\ & & = \left (-\left.x,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta -\left.x,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta + \mathcal{O}(r^{2})\right ) {}\\ & & \left (\left.y,_{t}^{v}\right \vert _{ (0,\eta )} + \left.y,_{tt}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.y,_{\xi t}^{v}\right \vert _{ (0,\eta )}r\sin \theta + \mathcal{O}(r^{2})\right ) = {}\\ & & = -\left (\left.x,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.x,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )\left.y,_{t}^{v}\right \vert _{ (0,\eta )} + \mathcal{O}(r^{2}) {}\\ \end{array}$$

and in the same way:

$$\displaystyle\begin{array}{rcl} & & \left (y(\eta ) - y^{v}(t,\xi )\right )x,_{ t}^{v}(t,\xi ) = {}\\ & & = -\left (\left.y,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.y,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )\left.x,_{t}^{v}\right \vert _{ (0,\eta )} + \mathcal{O}(r^{2})\;. {}\\ \end{array}$$

Hence the expression of \(\mathfrak{N}\):

$$\displaystyle\begin{array}{rcl} \mathfrak{N}(r,\theta,\eta )& =& \left (\left.x,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.x,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )\left.y,_{t}^{v}\right \vert _{ (0,\eta )} {}\\ & -& \left (\left.y,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.y,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )\left.x,_{t}^{v}\right \vert _{ (0,\eta )} + \mathcal{O}(r^{2}) = {}\\ & =& \left (\left.x,_{t}^{v}\right \vert _{ (0,\eta )}\left.y,_{t}^{v}\right \vert _{ (0,\eta )} -\left.y,_{t}^{v}\right \vert _{ (0,\eta )}\left.x,_{t}^{v}\right \vert _{ (0,\eta )}\right )r\sin \theta + \mathcal{O}(r^{2}) = {}\\ & =& Nr\sin \theta + \mathcal{O}(r^{2})\;. {}\\ \end{array}$$

where

$$\displaystyle{ N = \left.x,_{t}^{v}\right \vert _{ (0,\eta )}\left.y,_{t}^{v}\right \vert _{ (0,\eta )} -\left.y,_{t}^{v}\right \vert _{ (0,\eta )}\left.x,_{t}^{v}\right \vert _{ (0,\eta )}\;. }$$

Instead for the terms of \(\mathfrak{D}\):

$$\displaystyle\begin{array}{rcl} & & \left (x(\eta ) - x^{v}(t,\xi )\right )^{2} = {}\\ & & = \left (-\left.x,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta -\left.x,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta + \mathcal{O}(r^{2})\right )^{2} = {}\\ & & = \left (\left.x,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.x,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )^{2} + \mathcal{O}(r^{3}) {}\\ \end{array}$$

and nearly the same for the other components. The expression of \(\mathfrak{D}\) becomes

$$\displaystyle\begin{array}{rcl} \mathfrak{D}(r,\theta,\eta )& =& \left \vert \left (\left.x,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.x,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )^{2}\right. {}\\ & +& \left (\left.y,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.y,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )^{2} {}\\ & +& \left.\left (\left.z,_{t}^{v}\right \vert _{ (0,\eta )}r\cos \theta + \left.z,_{\xi }^{v}\right \vert _{ (0,\eta )}r\sin \theta \right )^{2} + \mathcal{O}(r^{3})\right \vert ^{3/2} = {}\\ & =& r^{2}\left \vert D(\theta ) + \mathcal{O}(r)\right \vert ^{3/2} = r^{2}D^{\frac{3} {2} }(\theta )\left (1 + \mathcal{O}(r)\right )^{3/2}\;, {}\\ \end{array}$$

where

$$\displaystyle{ \begin{array}{rcl} D(\theta )& =&\left (\left.x,_{t}^{v}\right \vert _{(0,\eta )}\cos \theta + \left.x,_{\xi }^{v}\right \vert _{(0,\eta )}\sin \theta \right )^{2} \\ & + &\left (\left.y,_{t}^{v}\right \vert _{(0,\eta )}\cos \theta + \left.y,_{\xi }^{v}\right \vert _{(0,\eta )}\sin \theta \right )^{2} \\ & + &\left (\left.z,_{t}^{v}\right \vert _{(0,\eta )}\cos \theta + \left.z,_{\xi }^{v}\right \vert _{(0,\eta )}\sin \theta \right )^{2}\;. \end{array} }$$
(33)

Therefore g z becomes

$$\displaystyle\begin{array}{rcl} g_{z}(r,\theta,\eta )& =& \frac{Nr\cos \theta + \mathcal{O}(r^{2})} {r^{2}D^{\frac{3} {2} }(\theta )\left (1 + \mathcal{O}(r)\right )^{3/2}} {}\\ & =& \frac{\left (N\sin \theta + \mathcal{O}(r)\right )\left (1 + \mathcal{O}(r)\right )^{-3/2}} {r^{2}D^{\frac{3} {2} }(\theta )} {}\\ & =& \frac{\left (N\sin \theta + \mathcal{O}(r)\right )\left (1 -\frac{3} {2}\mathcal{O}(r) + \mathcal{O}(r^{2})\right )} {r^{2}D^{\frac{3} {2} }(\theta )} {}\\ & =& \frac{N\sin \theta + \mathcal{O}(r)} {r^{2}D(\theta )} {}\\ & =& \frac{N\sin \theta } {r^{2}D^{\frac{3} {2} }(\theta )} + \mathcal{O}\left (\frac{1} {r}\right )\;. {}\\ \end{array}$$

Finally we obtain

$$\displaystyle{ \left \{\begin{array}{rl} &g_{x}(r,\theta,\eta ) = \frac{1} {r^{2}} \, \frac{\left (y,_{\xi }^{v}z,_{ t}^{v}-z,_{\xi }^{v}y,_{ t}^{v}\right )\sin \theta } {\left [D(\theta )\right ]^{3/2}} + \mathcal{O}\left (\frac{1} {r}\right ) \\ &g_{y}(r,\theta,\eta ) = \frac{1} {r^{2}} \, \frac{\left (z,_{\xi }^{v}x,_{ t}^{v}-x,_{\xi }^{v}z,_{ t}^{v}\right )\sin \theta } {\left [D(\theta )\right ]^{3/2}} + \mathcal{O}\left (\frac{1} {r}\right ) \\ &g_{z}(r,\theta,\eta ) = \frac{1} {r^{2}} \, \frac{\left (x,_{\xi }^{v}y,_{ t}^{v}-y,_{\xi }^{v}x,_{ t}^{v}\right )\sin \theta } {\left [D(\theta )\right ]^{3/2}} + \mathcal{O}\left (\frac{1} {r}\right ) \end{array} \right.\;, }$$
(34)

where all the partial derivatives are calculated in (0, η), and D(θ) is defined by (33). These expressions proved that the singularity is a second order pole. The partial derivative in (34), according to Eq. (9) are:

$$\displaystyle{ \left \{\begin{array}{l} x,_{t}^{v} = 1 \\ y,_{t}^{v} = -\mu _{0}z(\eta ) \\ z,_{t}^{v} =\mu _{0}y(\eta )\end{array} \right.\qquad \left \{\begin{array}{l} x,_{\xi }^{v} = x_{,\eta }(\eta ) \\ y,_{\xi }^{v} = y_{,\eta }(\eta ) \\ z,_{\xi }^{v} = z_{,\eta }(\eta )\end{array} \right.\;, }$$

thus Eq. (34) becomes

$$\displaystyle{ \left \{\begin{array}{rl} &g_{x}(t,\xi,\eta ) =\mu _{0} \frac{yy,_{\eta }+zz,_{\eta }} {\left [\overline{D}(t,\xi,\eta )\right ]^{3/2}} \left (\xi -\eta \right ) + \mathcal{O}\left ( \frac{1} {\sqrt{t^{2 } +(\xi -\eta )^{2}}} \right ) \\ &g_{y}(t,\xi,\eta ) = \frac{z,_{\eta }-\mu _{0}yx,_{\eta }} {\left [\overline{D}(t,\xi,\eta )\right ]^{3/2}} \left (\xi -\eta \right ) + \mathcal{O}\left ( \frac{1} {\sqrt{t^{2 } +(\xi -\eta )^{2}}} \right ) \\ &g_{z}(t,\xi,\eta ) = - \frac{y,_{\eta }+\mu _{0}zx,_{\eta }} {\left [\overline{D}(t,\xi,\eta )\right ]^{3/2}} \left (\xi -\eta \right ) + \mathcal{O}\left ( \frac{1} {\sqrt{t^{2 } +(\xi -\eta )^{2}}} \right ) \end{array} \right.\;, }$$
(35)

where

$$\displaystyle{ \begin{array}{rcl} \overline{D}(t,\xi,\eta )& =&\left [1 +\mu _{ 0}^{2}(y^{2} + z^{2})\right ]t^{2} + 2\left [x,_{\eta } +\mu _{0}(yz,_{\eta } - zy,_{\eta })\right ](\xi -\eta )t+ \\ & + &\left (x,_{\eta }^{2} + y,_{\eta }^{2} + z,_{\eta }^{2}\right )(\xi -\eta )^{2}\;. \end{array} }$$
(36)

Appendix 2: Existence of Functionals

In order to prove existence and continuity of the functionals we have to prove that the integrals, defining C T and C M , exist. Just the term containing induced velocity is singular; this is obtained as a summation over the blades and only the first term of this sum is singular, the one indicated by the apex0. Therefore we analyse the following integrals:

$$\displaystyle\begin{array}{rcl} C_{T_{ind}}^{0}(\varGamma )& =& \frac{1} {2\pi }\int _{0}^{1}\varGamma (\eta )\int _{ 0}^{1}\frac{\mathrm{d}\varGamma } {\mathrm{d}\xi }\int _{0}^{\infty }\mathbf{g}_{ 0}(t,\xi,\eta )\mathrm{d}t\mathrm{d}\xi \times \mathrm{ d}\mathbf{r}(\eta ) \cdot \mathbf{i}{}\end{array}$$
(37)
$$\displaystyle\begin{array}{rcl} C_{M_{ind}}^{0}(\varGamma )& =& -\frac{1} {2\pi }\int _{0}^{1}\varGamma (\eta )\mathbf{r}(\eta ) \times \left (\int _{ 0}^{1}\frac{\mathrm{d}\varGamma } {\mathrm{d}\xi }\int _{0}^{\infty }\mathbf{g}_{ 0}(t,\xi,\eta )\mathrm{d}t\mathrm{d}\xi \times \mathrm{ d}\mathbf{r}(\eta )\right ) \cdot \mathbf{i}\;,{}\end{array}$$
(38)

where g 0(t, ξ, η) is the singular kernelFootnote 8:

$$\displaystyle{ \mathbf{g}_{0}(t,\xi,\eta ):= \frac{\mathrm{d}\mathbf{r}_{0}^{v}(t)} {\mathrm{d}t} \times \frac{\mathbf{r}(\eta ) -\mathbf{r}_{0}^{v}(t,\xi )} {\left \Vert \mathbf{r}(\eta ) -\mathbf{r}_{0}^{v}(t,\xi )\right \Vert ^{3}}\;. }$$

Performing the operations between vectors we obtain the same kind of functional for both, momentum and thrust:

$$\displaystyle{ C(\varGamma ):=\int _{ 0}^{1}\varGamma (\eta )\int _{ 0}^{1}\varGamma ^{{\prime}}(\xi )\int _{ 0}^{\infty }\sum _{ j=1}^{3}f_{ j}(\eta )\left (\mathbf{g}_{0}(t,\xi,\eta )\right )_{j}\mathrm{d}t\mathrm{d}\xi \mathrm{d}\eta \;, }$$

where f j (η) is a regular function depending on the blade line. We employ Eq. (35) and then we neglect the regular part of C(Γ) in order to obtain the following singular integral

$$\displaystyle{ \overline{C}(\varGamma ):=\int _{ 0}^{1}\varGamma (\eta )\int _{ 0}^{1}\varGamma ^{{\prime}}(\xi )\int _{ 0}^{\infty } \frac{f(\eta )(\xi -\eta )} {\left [a(\eta )t^{2} + 2b(\xi,\eta )t + c(\xi,\eta )\right ]^{\frac{3} {2} }} \mathrm{d}t\mathrm{d}\xi \mathrm{d}\eta \;, }$$
(39)

where

$$\displaystyle{ \begin{array}{rcl} a(\eta )& =&1 +\mu _{ 0}^{2}(y^{2} + z^{2}) \\ b(\xi,\eta )& =&\left [x,_{\eta } +\mu _{0}(yz,_{\eta } - zy,_{\eta })\right ](\xi -\eta ) \\ c(\xi,\eta )& =&\left (x,_{\eta }^{2} + y,_{\eta }^{2} + z,_{\eta }^{2}\right )(\xi -\eta )^{2} \end{array} }$$
(40)

and f(η) is a regular function depending on the blade line. This expression does not respect the definition of integral according to Riemann.Footnote 9 We have to adopt Cauchy principal value. That means associating with the integral the value of a correspondent limit, if this limit exists finite then the integral converges according to Cauchy. Before proving the existence of this integral, we recall some useful definitions.

Definition 1.

A function \(f: [a,b] \rightarrow \mathbb{R}\) is absolutely continuous in [a, b], and we write f ∈ AC[a, b] iff, for any ɛ > 0 it exists δ > 0 such that for any finite collections of disjoint intervals ]α i , β i [,  i = 1, , k, included in [a, b] and with

$$\displaystyle{ \sum _{i=1}^{k}(\beta _{ i} -\alpha _{i}) <\delta \;,\quad \mbox{ it results }\quad \sum _{i=1}^{k}\left \vert f(\beta _{ i}) - f(\alpha _{i})\right \vert <\varepsilon \;. }$$

Definition 2.

Let \((Y,\mathcal{F},\mu )\) be a measure space and 1 ≤ p ≤ . We put

$$\displaystyle\begin{array}{rcl} & & L^{p}(Y ) = \left \{f: Y \rightarrow \overline{\mathbb{R}}:\: f\mbox{ is measurable and }\int _{ Y }\left \vert f\right \vert ^{p}dy <\infty \right \}\;, {}\\ & & \Vert f\Vert _{L^{p}(Y )} = \left [\int _{Y }\left \vert f\right \vert ^{p}\mathrm{d}y\right ]^{\frac{1} {p} }\;. {}\\ \end{array}$$

Hölder Inequality.If q is conjugate exponent of p (i.e. 1∕p + 1∕q = 1, by stipulation, the conjugate exponent of 1 is ∞ ), if f ∈ L p(Y ) and g ∈ L q(Y ), then

$$\displaystyle{ fg \in L^{1}(Y )\quad \text{and}\quad \Vert fg\Vert _{ L^{1}(Y )} \leq \Vert f\Vert _{L^{p}(Y )}\Vert g\Vert _{L^{q}(Y )}\;. }$$

Proposition 1.

Let Γ ∈ AC[0;1] be such that

$$\displaystyle{ \varGamma (0) =\varGamma (1) = 0,\qquad \varGamma,\;\varGamma ^{{\prime}}\in L^{1+\varepsilon }(0;1)\:\text{with}\:\varepsilon> 0\;. }$$

Then\(\overline{C}(\varGamma )\) , defined in (39) , is convergent as a Cauchy improper integral.

Proof.

Let us set

$$\displaystyle\begin{array}{rcl} S_{1}(h)&:=& \left \{(\xi,\eta ) \in \mathbb{R}^{2}:\, 0 \leq \xi \leq 1 - h,\,\xi +h \leq \eta \leq 1\right \} {}\\ S_{2}(h)&:=& \left \{(\xi,\eta ) \in \mathbb{R}^{2}:\, h \leq \xi \leq 1,\,0 \leq \eta \leq \xi -h\right \}\;, {}\\ \end{array}$$

with h ∈ [0; 1] (Fig. 19), and

$$\displaystyle\begin{array}{rcl} G_{S_{i}(h)}&:=& \iint _{S_{i}(h)}\varGamma ^{{\prime}}(\xi )\varGamma (\eta )\int _{ 0}^{\infty } \frac{f(\eta )(\xi -\eta )} {\left [a(\eta )t^{2} + 2b(\xi,\eta )t + c(\xi,\eta )\right ]^{\frac{3} {2} }} \mathrm{d}t\mathrm{d}\xi \mathrm{d}\eta {}\\ \end{array}$$

for i = 1, 2. The standard integration rules can be adopted for these integrals because they are regular.

Fig. 19
figure 19

Regular integration sets

We solve the inner integral, in t:

$$\displaystyle{ T(\xi,\eta ):=\int _{ 0}^{\infty } \frac{\mathrm{d}t} {\left (at^{2} + 2bt + c\right )^{\frac{3} {2} }} =\int _{ 0}^{\infty } \frac{\mathrm{d}t} {\left [\left (\sqrt{a}t + b/\sqrt{a}\right )^{2} + c - b^{2}/a\right ]^{3/2}}\;, }$$

with the change of variable

$$\displaystyle\begin{array}{rcl} & & s = \sqrt{a}t + b/\sqrt{a}\quad \Rightarrow \quad \mathrm{d}t =\mathrm{ d}s/\sqrt{a} {}\\ & & t \rightarrow \infty \quad,\quad s \rightarrow \infty {}\\ & & t = 0\,,\,s = b/\sqrt{a}\;, {}\\ \end{array}$$

we haveFootnote 10

$$\displaystyle\begin{array}{rcl} T(\xi,\eta )& =& \frac{1} {\sqrt{a}}\int _{ \frac{b} {\sqrt{a}} }^{\infty } \frac{\mathrm{d}s} {\left [s^{2} + c - b^{2}/a\right ]^{3/2}} = \frac{1} {\sqrt{a}}\left [ \frac{s} {(c - b^{2}/a)\sqrt{c - b^{2 } /a + s^{2}}}\right ]_{ \frac{b} {\sqrt{a}} }^{\infty } = {}\\ & =& \frac{1} {\sqrt{c}\left (\sqrt{ac} + b\right )} = \frac{g(\eta )} {(\xi -\eta )^{2}}\;, {}\\ \end{array}$$

where, in the last passage, we used Eq. (40) and g(η) is a regular function depending on the blade line. We obtain

$$\displaystyle\begin{array}{rcl} G_{S_{i}(h)}& =& \iint _{S_{i}(h)}\frac{\varGamma ^{{\prime}}(\xi )\varGamma (\eta )\overline{f}(\eta )} {\eta -\xi } \mathrm{d}\xi \mathrm{d}\eta \;,\,\,\;i = 1,2\;, {}\\ \end{array}$$

where \(\overline{f}(\eta ) = -f(\eta )g(\eta )\), that is a regular function depending on blade line.Footnote 11 Let us integrate by parts both \(G_{S_{1}(h)}\) and \(G_{S_{2}(h)}\). For the first integral we have

$$\displaystyle\begin{array}{rcl} & & G_{S_{1}(h)} =\int _{ 0}^{1-h}\int _{ \xi +h}^{1}\varGamma ^{{\prime}}(\xi )\varGamma (\eta )\overline{f}(\eta ) \frac{1} {\eta -\xi }\mathrm{d}\eta \mathrm{d}\xi {}\\ & & \qquad \quad =\int _{ 0}^{1-h}\left \{\left [\varGamma ^{{\prime}}(\xi )\varGamma (\eta )\overline{f}(\eta )\ln (\eta -\xi )\right ]_{\xi +h}^{1}\right. {}\\ & & \qquad \quad \left.-\int _{\xi +h}^{1}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\eta -\xi )\mathrm{d}\eta \right \}\mathrm{d}\xi \;, {}\\ \end{array}$$

because \(\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\ln \left (\eta -\xi \right )\right ] = \frac{1} {\eta -\xi }\). Then, by using the boundary condition Γ(1) = 0,

$$\displaystyle\begin{array}{rcl} & & G_{S_{1}(h)} =\int _{ 0}^{1-h}\left \{ -\varGamma ^{{\prime}}(\xi )\varGamma (\xi +h)\overline{f}(\xi +h)\ln h\right. {}\\ & & \qquad \quad \left.-\int _{\xi +h}^{1}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\eta -\xi )\mathrm{d}\eta \right \}\mathrm{d}\xi \;. {}\\ \end{array}$$

We proceed in the same way for the second integral:

$$\displaystyle\begin{array}{rcl} & & G_{S_{2}(h)} =\int _{ h}^{1}\int _{ 0}^{\xi -h}\varGamma ^{{\prime}}(\xi )\varGamma (\eta )\overline{f}(\eta ) \frac{1} {\eta -\xi }\mathrm{d}\eta \mathrm{d}\xi {}\\ & & \qquad \quad =\int _{ h}^{1}\left \{\left [\varGamma ^{{\prime}}(\xi )\varGamma (\eta )\overline{f}(\eta )\ln (\xi -\eta )\right ]_{ 0}^{\xi -h}\right. {}\\ & & \qquad \quad \left.-\int _{0}^{\xi -h}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\eta -\xi )\mathrm{d}\eta \right \}\mathrm{d}\xi \;, {}\\ \end{array}$$

because \(\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\ln \left (\xi -\eta \right )\right ] = -\frac{1} {\xi -\eta } = \frac{1} {\eta -\xi }\). Then, by using the other boundary condition Γ(0) = 0,

$$\displaystyle\begin{array}{rcl} & & G_{S_{2}(h)} =\int _{ h}^{1}\left \{\varGamma ^{{\prime}}(\xi )\varGamma (\xi -h)\overline{f}(\xi -h)\ln h\right. {}\\ & & \qquad \quad \left.-\int _{0}^{\xi -h}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\xi -\eta )\mathrm{d}\eta \right \}\mathrm{d}\xi \;. {}\\ \end{array}$$

It results that

$$\displaystyle\begin{array}{rcl} & & \overline{C}(\varGamma ) =\lim _{h\rightarrow 0}\left [G_{S_{1}(h)} + G_{S_{2}(h)}\right ] {}\\ & & \qquad \ \ =\lim _{h\rightarrow 0}\left [-\int _{0}^{1-h}\int _{ \xi +h}^{1}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\eta -\xi )\mathrm{d}\eta \mathrm{d}\xi \right. {}\\ & & \qquad \ \ +\ln h\left (\int _{h}^{1}\varGamma ^{{\prime}}(\xi )\varGamma (\xi -h)\overline{f}(\xi -h)\mathrm{d}\xi -\int _{ 0}^{1-h}\varGamma ^{{\prime}}(\xi )\varGamma (\xi +h)\overline{f}(\xi +h)\mathrm{d}\xi \right ) {}\\ & & \qquad \ \ \left.-\int _{h}^{1}\int _{ 0}^{\xi -h}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\xi -\eta )\mathrm{d}\eta \mathrm{d}\xi \right ]\;. {}\\ \end{array}$$

where

$$\displaystyle\begin{array}{rcl} & & \lim _{h\rightarrow 0}\:\ln h\left (\int _{h}^{1}\varGamma ^{{\prime}}(\xi )\varGamma (\xi -h)\overline{f}(\xi -h)\mathrm{d}\xi \right. {}\\ & & \phantom{vvvvvvvvvvvvvvvvvvvvvvvvvvvv}\left.-\int _{0}^{1-h}\varGamma ^{{\prime}}(\xi )\varGamma (\xi +h)\overline{f}(\xi +h)\mathrm{d}\xi \right ) = 0\;, {}\\ \end{array}$$

thus

$$\displaystyle\begin{array}{rcl} & & \overline{C}(\varGamma ) =\lim _{h\rightarrow 0}\left [ -\int _{0}^{1-h}\int _{ \xi +h}^{1}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\eta -\xi )\mathrm{d}\eta \mathrm{d}\xi \right. {}\\ & & \qquad \ \ \left.-\int _{h}^{1}\int _{ 0}^{\xi -h}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln (\xi -\eta )\mathrm{d}\eta \mathrm{d}\xi \right ] = {}\\ & & \qquad \ \ = -\int _{0}^{1}\int _{ 0}^{1}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln \left \vert \xi -\eta \right \vert \mathrm{d}\eta \mathrm{d}\xi \;. {}\\ \end{array}$$

The absolute value of sum is less than or equal to the sum of absolute values:

$$\displaystyle\begin{array}{rcl} & & \left \vert \int _{0}^{1}\int _{ 0}^{1}\varGamma ^{{\prime}}(\xi )\frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\ln \left \vert \xi -\eta \right \vert \mathrm{d}\eta \mathrm{d}\xi \right \vert \leq \\ & &\phantom{vvvvvvvvvvvvvvvvvv}\int _{0}^{1}\left \vert \varGamma ^{{\prime}}(\xi )\right \vert \int _{ 0}^{1}\left \vert \frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\right \vert \left \vert \ln \left \vert \xi -\eta \right \vert \right \vert \mathrm{d}\eta \mathrm{d}\xi.{}\end{array}$$
(41)

From Hölder inequality we obtain

$$\displaystyle\begin{array}{rcl} & & \int _{0}^{1}\left \vert \frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\right \vert \left \vert \ln \left \vert \xi -\eta \right \vert \right \vert \mathrm{d}\eta \mathrm{d}\xi \leq {}\\ & &\phantom{vvvvvvvvvvvvvvvvvvvvvvvv}\left \Vert \frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\right \Vert _{L^{1+\varepsilon }(0,1)}\left \Vert \ln \left \vert \xi -\eta \right \vert \right \Vert _{ L^{\frac{1+\varepsilon } {\varepsilon } }(0,1)}. {}\\ \end{array}$$

Observe thatFootnote 12

$$\displaystyle{ \left \Vert \ln \left \vert \xi -\eta \right \vert \right \Vert _{ L^{\frac{1+\varepsilon } {\varepsilon } }(0,1)} <c\quad \text{with }c \in \mathbb{R}\; }$$

and

$$\displaystyle\begin{array}{rcl} \left \Vert \frac{\mathrm{d}} {\mathrm{d}\eta }\left [\varGamma (\eta )\overline{f}(\eta )\right ]\right \Vert _{L^{1+\varepsilon }(0,1)}& \leq & \left \Vert \varGamma ^{{\prime}}(\eta )\overline{f}(\eta )\right \Vert _{ L^{1+\varepsilon }(0,1)} + \left \Vert \varGamma (\eta )\overline{f}^{{\prime}}(\eta )\right \Vert _{ L^{1+\varepsilon }(0,1)} \leq {}\\ &\leq & P\left \Vert \varGamma ^{{\prime}}(\eta )\right \Vert _{ L^{1+\varepsilon }(0,1)} + Q\left \Vert \varGamma (\eta )\right \Vert _{L^{1+\varepsilon }(0,1)}\;, {}\\ \end{array}$$

because, given the regularity of \(\overline{f}(\eta )\), we have that

$$\displaystyle{ \exists P,Q \in \mathbb{R}\,: \quad \left \vert \overline{f}(\eta )\right \vert \leq P,\;\left \vert \overline{f}^{{\prime}}(\eta )\right \vert \leq Q\;\forall \eta \in [0;1]\;. }$$

From (41) we have, finally:

$$\displaystyle\begin{array}{rcl} & & \left \vert \overline{C}(\varGamma )\right \vert \leq cP\left \Vert \varGamma (\eta )\right \Vert _{L^{1}(0,1)}\left \Vert \varGamma ^{{\prime}}(\eta )\right \Vert _{ L^{1+\varepsilon }(0,1)} + \\ & & \phantom{vvvvvvvvvvvvvvvvvvvvvvvvvv} + cQ\left \Vert \varGamma (\eta )\right \Vert _{L^{1}(0,1)}\left \Vert \varGamma (\eta )\right \Vert _{L^{1+\varepsilon }(0,1)} <\infty {}\end{array}$$
(42)

as required. ⊓ ⊔

Appendix 3: Convexity of Momentum Functional

According to (15), (19) and (30) we define \(C_{M_{1}}(\varGamma )\) and \(C_{M_{2}}(\varGamma )\) such that

$$\displaystyle\begin{array}{rcl} C_{M_{1}}(\varGamma )&:=& 2N\int _{\gamma _{b}^{0}}\varGamma (\mathbf{r})\mathbf{r} \times \left [\left (\mathbf{i} +\mu _{0}r\mathbf{e}_{\theta }\right ) \times \mathrm{ d}\mathbf{r}\right ] \cdot \mathbf{i}\;, {}\\ C_{M_{2}}(\varGamma )&:=& -\frac{N} {2\pi } \sum _{i=0}^{N-1}\int _{ \gamma _{b}^{0}}\varGamma (\mathbf{r})\mathbf{r} \times \left (\int _{\gamma _{b}^{i}}\frac{\mathrm{d}\varGamma (\xi )} {\mathrm{d}\xi } \int _{\gamma _{v}^{i}}\mathbf{g}_{i}(t,\xi,\eta )\mathrm{d}t\mathrm{d}\xi \times \mathrm{ d}\mathbf{r}\right ) \cdot \mathbf{i}\;, {}\\ \end{array}$$

that means

$$\displaystyle{ C_{M}(\varGamma ) = C_{M_{1}}(\varGamma ) + C_{M_{2}}(\varGamma )\;. }$$
(43)

Before proving the convexity of the functional C M , we recall the following:

Definition 3.

Let K be a vector space. A function \(f: K \rightarrow \mathbb{R}\) is called convex, if and only if

$$\displaystyle{ (1-\alpha )f(x) +\alpha f(x) \geq f((1-\alpha )x +\alpha y),\quad \forall x,y \in K,\quad \forall \alpha \in [0,1]\;. }$$
(44)

We say that function f is strictly convex, if and only if the inequality (44) holds strictly.

Theorem 1.

Let K be a vector space and\(f: K \rightarrow \mathbb{R}\)be a function whatever. Then f is strictly convex on K, if and only if\(\forall x,y \in K\)the quotient ratio

$$\displaystyle{ t \rightarrow R_{y}(t) = \frac{f(x + ty) - f(x)} {t},\quad t \in \mathbb{R}_{+}\setminus \left \{0\right \} }$$

is an increasing function.

Proposition 2.

Let be:

$$\displaystyle{ I:= \left \{\varGamma \in AC[0;1],\:\varGamma,\;\varGamma ^{{\prime}}\in L^{1+\varepsilon }(0;1)\;\text{with}\;\varepsilon> 0,\:\varGamma (0) =\varGamma (1) = 0\right \} }$$

and C M (Γ) defined by (43), so we have

  1. (a)

    the functional C Mis not strictly convex in I;

  2. (b)

    the functional C Mis strictly convex in\(I^{+}:= \left \{\varGamma \in I\::\: C_{M_{2}}(\varGamma )> 0\right \}\) .

Proof.

We use a more compact expression for momentum functional.

$$\displaystyle{ \left \{\begin{array}{rcl} C_{M_{1}} & =&\int _{\gamma _{b}^{0}}\varGamma (\eta )H_{1}(\eta )\mathrm{d}\eta \\ C_{M_{2}} & =&\sum _{i=0}^{N-1}\int _{\gamma _{b}^{0}}\int _{\gamma _{b}^{i}}\varGamma (\eta )\varGamma ^{{\prime}}(\xi )H_{2}^{i}(\xi,\eta )\mathrm{d}\xi \mathrm{d}\eta \end{array} \right. }$$

Given Γ, g ∈ I and t > 0 we have

$$\displaystyle\begin{array}{rcl} R_{h}(t)& =& \frac{C_{M}\left (\varGamma +tg\right ) - C_{M}\left (\varGamma \right )} {t} {}\\ & =& \frac{C_{M_{1}}\left (\varGamma +tg\right ) - C_{M_{1}}\left (\varGamma \right )} {t} + \frac{C_{M_{2}}\left (\varGamma +tg\right ) - C_{M_{2}}\left (\varGamma \right )} {t} {}\\ & =& \frac{1} {t}\left [\int \left (\varGamma \left (\eta \right ) + tg\left (\eta \right )\right )H_{1}(\eta )\mathrm{d}\eta -\int \varGamma \left (\eta \right )H_{1}(\eta )\mathrm{d}\eta \right. {}\\ & & +\sum _{i=0}^{N-1}\iint _{ i}\left (\varGamma (\eta ) + tg(\eta )\right )\left (\varGamma ^{{\prime}}(\xi ) + tg^{{\prime}}(\xi )\right )H_{ 2}^{i}(\xi,\eta )\mathrm{d}\xi \mathrm{d}\eta {}\\ & & -\left.\sum _{i=0}^{N-1}\iint _{ i}\varGamma (\eta )\varGamma ^{{\prime}}(\xi )H_{ 2}^{i}(\xi,\eta )\mathrm{d}\xi \mathrm{d}\eta \right ] = {}\\ & =& \int g(\eta )H_{1}(\eta )\mathrm{d}\eta +\sum _{ i=0}^{N-1}\iint _{ i}\left (\varGamma (\eta )g^{{\prime}}(\xi ) + g(\eta )\varGamma ^{{\prime}}(\xi )\right )H_{ 2}^{i}(\xi,\eta )\mathrm{d}\xi \mathrm{d}\eta {}\\ & & +t\sum _{i=0}^{N-1}\iint _{ i}g(\eta )g^{{\prime}}\left (\xi \right )H_{ 2}^{i}(\xi,\eta )\mathrm{d}\xi \mathrm{d}\eta \;. {}\\ \end{array}$$

Hence the first derivative:

$$\displaystyle{ \frac{\mathrm{d}} {\mathrm{d}t}\left [R_{h}(t)\right ] =\int \int g\left (\eta \right )g^{{\prime}}\left (\xi \right )H_{ 2}(\xi,\eta )\mathrm{d}\xi \mathrm{d}\eta = C_{M_{2}}(g)\;. }$$

Note that the first derivative of quotient ratio, for g ∈ I is not, in general, positive. Whereas for g ∈ I + we do have \(C_{M_{2}}(g)> 0\), then the function R h (t) is strictly increasing. ⊓ ⊔

Appendix 4: Velocity Induced by the Bounded Vorticity

For wing the induction of the bounded vortex filament is in direction of the asymptotic velocity. That is the reason why this contribution is neglected in [3]. For airscrew the velocity seen by the blade is the composition of asymptotic and rotational velocity, thus, the velocity induced by the bounded filament does not have, in general, the same direction of the velocity seen by the blade. For straight blade propeller the velocity induced by the bounded vorticity, u Bind (η), is null for reason of symmetry, but in general this contribution is not zero. According to the Biot-Savart law we have

$$\displaystyle{ \mathbf{u}_{B\,ind}(\eta ) = \frac{1} {4\pi }\sum _{i=0}^{N-1}\int _{ \gamma _{b}^{i}}\varGamma (\xi )\frac{\mathrm{d}\mathbf{r}_{i}} {\mathrm{d}\xi } \times \frac{\mathbf{r}(\eta ) -\mathbf{r}_{i}(\xi )} {\left \Vert \mathbf{r}(\eta ) -\mathbf{r}_{i}(\xi )\right \Vert ^{3}}\mathrm{d}\xi \;, }$$
(45)

where r(η) is the position vector on the induced blade and r i (ξ) on the inducing blade. Note that for i = 0 the integrand is singular. We find that

$$\displaystyle{ \frac{\mathrm{d}\mathbf{r}_{0}} {\mathrm{d}\xi } \times \frac{\mathbf{r}(\eta ) -\mathbf{r}_{0}(\xi )} {\left \Vert \mathbf{r}(\eta ) -\mathbf{r}_{0}(\xi )\right \Vert ^{3}}\mathrm{d}\xi = \frac{f(\eta )} {(\xi -\eta )} + \frac{\mathcal{O}(\xi -\eta )} {(\xi -\eta )} \;, }$$

where f(η) is a regular function, thus there are not problem of existence in our class of functions \(\mathcal{X}\), defined by (20). The following figures show the results obtained for a swept blade when the contribution of bounded vorticity is not neglected (Figs. 20, 21, 22, and 23). The comparison with the correspondent figures in Sect. 7, where bounded vorticity is neglected, is interesting because it shows the importance of the velocity induced by the bounded vorticity.

Fig. 20
figure 20

Relative efficiency of blades swept in rotation plane for N = 1, Ω = 2 and C Ttarget  = 0. 1

Fig. 21
figure 21

Circulation distribution for blades swept in rotation plane for N = 1, Ω = 2 and C Ttarget  = 0. 1

Fig. 22
figure 22

Relative efficiency of blades swept in axial direction for N = 1, Ω = 2 and C Ttarget  = 0. 1

Fig. 23
figure 23

Circulation distribution for blades swept in axial direction for N = 1, Ω = 2 and C Ttarget  = 0. 1

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Torrigiani, F., Frediani, A., Dipace, A. (2016). Variational Analysis and Euler Equation of the Optimum Propeller Problem. In: Frediani, A., Mohammadi, B., Pironneau, O., Cipolla, V. (eds) Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-45680-5_18

Download citation

Publish with us

Policies and ethics