Skip to main content
Log in

Variational Approach to the Problem of the Optimal Propeller Design

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

The aim of this paper is to evaluate the theoretical efficiency of optimal propellers by means of a variational approach; non classical propellers are included in the analysis. A solution to the optimum rotor problem, in the context of propeller vortex theory, was given by Goldstein in 1929; in this paper, a variational formulation of the optimum rotor problem is proposed. The formulation consists into finding a class of functions (the circulation along the blade axis) for which the thrust and drag momentum functionals are well defined; in this class, the functional is proved to be strictly convex and, thus, the global minimum exists and is unique. Some configurations are analysed using the Ritz method: classical straight blade, parabolic blade, elliptical blade; single and multiple blade propellers are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. M. Rankine, Transactions, Institute of Naval Architects, vol. 6, p. 13, 1865.

    Google Scholar 

  2. W. Froude, Transactions, Institute of Naval Architects, vol. 19, p. 47, 1878.

    Google Scholar 

  3. A. Betz, L. Prandtl, “Schraubenpropeller mit geringstem Energieverlust”, Göttingen State and University Library, 1919.

    Google Scholar 

  4. E. Pistolesi, “La teoria dei vortici in aerodinamica”, L’Aeronautica, IV, 4 Apr. 1932.

    Google Scholar 

  5. N. Y. Joukowsky, “Theorie turbillonaire de l’hélice propulsive”, Guathier-Villars, Paris 1929.

    Google Scholar 

  6. S. Goldstein, “On the vortex theory of screw propellers”, Royal Society of London, Series A, 1929.

    Book  Google Scholar 

  7. H. Glauert, “Airplane Propellers”, Aerodynamic Theory (W. F. Durand, Editor-in-chief), vol. 6, Division L, p. 324, Julius Springer, Berlin 1935.

    Google Scholar 

  8. C. Lock, “Application of Goldstein’s Airscrew Theory to Design”, Aeronautical Research Committee, RM 1377, Nov. 1930.

    Google Scholar 

  9. T. Theodorsen, “Theory of Propellers”, McGraw-Hill, 1948.

    MATH  Google Scholar 

  10. E. Larrabea, “The Screw Propeller”, Scientific American, vol. 243, n. 1, pp. 134–148, 1980.

    Google Scholar 

  11. C. Adkins, R. Liebeck, “Design of Optimum Propellers”, Journal of Propulsion and Power, vol. 10, n. 5, pp. 676–682, Sept.-Oct. 1994.

    Google Scholar 

  12. J. Dorfling, K. Rokhsaz, “Constrained and Unconstrained Propeller Blade Optimization”, Journal of Aircraft, vol. 52, n. 4, Jul.-Aug. 2015.

    Google Scholar 

  13. J. J. Chattot, “Optimization of propellers using helicoidal vortex model”, Computational Fluid Dynamics Journal, Vol. 9, No. 2, Jul. 2000.

    Google Scholar 

  14. J. J. Chattot, “Design and analysis of wind turbine using helicoidal vortex model”, Computational Fluid Dynamics Journal, Vol. 11, No. 1, Apr. 2002.

    Google Scholar 

  15. V. L. Okulov, Journal of Fluid Mechanics, vol. 521, pp. 319–342, 2004.

    Article  MathSciNet  Google Scholar 

  16. V. L. Okulov, J. N. Sorensen, “Optimum operating regimes for ideal wind turbine”, Journal of Physics, Conference Series 75, 2007.

    Book  Google Scholar 

  17. J. B. Blair, D. M. Mark, “Inviscid Analysis of Horizontal-Axis Wind Turbines Using Distributed Vorticity Elements”, AIAA, 2011.

    Google Scholar 

  18. C. D. Paxton, P. J. Gryn, E. K. Hines, “High efficiency forward swept propellers at low speed”, AIAA, 2003.

    Book  Google Scholar 

  19. R. Avellàn, A. Lundbladh, “Boxprop, a forward-swept joined-blade propeller”, AIAA, 2013.

    Google Scholar 

  20. E. Pistolesi, “Aerodinamica”, UTET, 1932.

    MATH  Google Scholar 

  21. R. Tognaccini, “Lezioni di aerodinamica dell’ala rotante”, Università degli Studi di Napoli Federico II, 2008–2009.

    Google Scholar 

  22. C. L. Tibery and J. W. Wrench, “Tables of Goldstein factor”, report 1534, Applied Mathematics Laboratory, Washington DC, 1964.

    Book  Google Scholar 

  23. F. Tricomi, “Equazioni integrali contenenti il valor principale di un integrale doppio”, Mathematische Zeitschrift, 1928, Vol. 27, pp. 87–133.

    Google Scholar 

  24. M. T. Panaro, A. Frediani, F. Giannessi, E. Rizzo, “Variational approach to the problem of the minimum induced drag of wings”, Springer, Variational Analysis and Aerospace Engineering, pp. 313–342, 2009.

    MATH  Google Scholar 

  25. L. E. Elsgolc, “Calculus of variation”, Pergamon Press, 1961.

    MATH  Google Scholar 

  26. L. Demasi, A. Dipace, G. Monegato, R. Cavallaro, “An Invariant formulation for the minimum induced dragcon ditions of non-planar wing systems”, AIAA, 2014.

    Google Scholar 

  27. G. Monegato, “The numerical evaluation of a 2-D Cauchy principal value integral arising in boundary integral equation methods”, AMS, Vol. 62, No. 206, pp. 765–777, Apr. 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrigiani, F., Dipace, A. & Frediani, A. Variational Approach to the Problem of the Optimal Propeller Design. Aerotec. Missili Spaz. 95, 13–23 (2016). https://doi.org/10.1007/BF03404710

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404710

Navigation