Skip to main content
Log in

Fracture Toughness of Hybrid Carbon Fibre/Epoxy Enhanced by Graphene and Carbon Nanotubes

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Carbon-based nanoparticles have attracted considerable attention in materials science and engineering fields as they can significantly improve the electro-thermo-mechanical properties of polymer-based materials. With the need of enhancing the mechanical property through the thickness direction of a carbon fibre reinforced polymer (CFRP) system, this study investigates the effect of graphene nanoplatelets (GNP), multi-walled carbon nanotubes (MWCNT) and their hybridisations on its Mode I interlaminar fracture toughness. Various nanoplatelet sizes and weight percentages are compared to prohibit their agglomeration in epoxy which can drastically reduce the mechanical properties of CFRP. The smallest GNP size, 1 μm, dispersed in the n-methyl-2-pyrrolidone solvent leads to an advanced 146% enhancement of Mode I interlaminar fracture toughness on the CFRP system. The acetone solvent is found less surface compatible with the nanoplatelets, but provides a simple and environmentally friendly manufacturing process. The hybrid GNP/MWCNT with 1wt% content dispersed in acetone solvent shows the synergistic effect and reaches a 120% enhancement of Mode I interlaminar fracture toughness of CFRP. Additionally, the application of the thin film hot press technique on nanoplatelets enhanced CFRP demonstrates an effective and promising solution to manufacture homogeneous multi-phase composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Njuguna, J., Pielichowski, K., Alcock, J.: Epoxy-Based Fibre Reinforced Nanocomposites. Adv. Eng. Mater. 9(10), 835–847 (2007)

    Article  Google Scholar 

  2. Meier, U.: Strengthening of structures using carbon fibre/epoxy composites. Constr. Build. Mater. 9(6), 341–351 (1995)

    Article  Google Scholar 

  3. Salvado, R., Lopes, C., Szojda, L., Araújo, P., Gorski, M., Velez, F., et al.: Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures. Sensors. 15(5), 10753–10770 (2015)

    Article  CAS  Google Scholar 

  4. Schultz, J., Lavielle, L., Martin, C.: The Role of the Interface in Carbon Fibre-Epoxy Composites. J. Adhes. 23(1), 45–60 (1987)

    Article  CAS  Google Scholar 

  5. Borowski, E., Soliman, E., Kandil, U., Taha, M.: Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers 7(6), 1020–1045 (2015)

    Article  CAS  Google Scholar 

  6. Tamuzs, V., Tarasovs, C., Vilks, U.: Delamination properties of translaminar-reinforced composites. Compos. Sci. Technol. 63(10), 1423–1431 (2003)

    Article  CAS  Google Scholar 

  7. Pan, Y., Wu, G., Cheng, X., Zhang, Z., Li, M., Ji, S., Huang, Z.: Mode I and Mode II interlaminar fracture toughness of CFRP/magnesium alloys hybrid laminates. Compos. Interfaces 23(5), 453–465 (2016)

    Article  CAS  Google Scholar 

  8. Pullicino, E., Zou, W., Gresil, M., Soutis, C.: The effect of shear mixing speed and time on the mechanical properties of GNP/epoxy composites. Appl. Compos. Mater. 24(2), 301–311 (2016)

    Article  Google Scholar 

  9. Wong, H.S.P., Akinwande, D.: Carbon nanotube and graphene device physics. 1–251 (2010)

  10. Balandin, A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8), 569–581 (2011)

    Article  CAS  Google Scholar 

  11. Poutrel, Q.A., Manta, A., Wang, Z., Wang, D., Soutis, C., Gresil, M.: Effect of pre and post-dispersion on electro-thermo-mechanical properties of a graphene enhanced epoxy. Appl. Compos. Mater. 24, 313–336 (2017)

    Article  CAS  Google Scholar 

  12. Kim, H., Oh, E., Hahn, H., Lee, K.: Enhancement of fracture toughness of hierarchical carbon fiber composites via improved adhesion between carbon nanotubes and carbon fibers. Compos. A Appl. Sci. Manuf. 71, 72–83 (2015)

    Article  CAS  Google Scholar 

  13. Mirjalili, V., Ramachandramoorthy, R., Hubert, P.: Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes. Carbon 79, 413–423 (2014)

    Article  CAS  Google Scholar 

  14. Quan, D., Urdániz, J.L., Ivanković, A.: Enhancing mode-I and mode-II fracture toughness of epoxy and carbon fibre reinforced epoxy composites using multi-walled carbon nanotubes. Mater. Des. 143, 81–92 (2018)

    Article  CAS  Google Scholar 

  15. Kumar, A., Roy, A.: Characterization of mixed mode fracture properties of nanographene reinforced epoxy and Mode I delamination of its carbon fiber composite. Compos. B Eng. 134, 98–105 (2018)

    Article  CAS  Google Scholar 

  16. Du, X., Zhou, H., Sun, W., Liu, H., Zhou, G., Zhou, H., et al.: Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Compos. Sci. Technol. 140, 123–133 (2017)

    Article  CAS  Google Scholar 

  17. Ning, H., Li, J., Hu, N., Yan C., Liu, Y., Wu, L., Liu, F., Zhang, J.: Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon 91:224–233 (2015)

  18. Hu, N., Masuda, Z., Yamamoto, G., Fukunaga, H., Hashida, T., Qiu, J.: Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposites. Compos. A Appl. Sci. Manuf. 39(5), 893–903 (2008)

    Article  Google Scholar 

  19. Wang, F., Drzal, L., Qin, Y., Huang, Z.: Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci. 50(3), 1082–1093 (2014)

    Article  Google Scholar 

  20. Chong, H., Hinder, S., Taylor, A.: Graphene nanoplatelet-modified epoxy: effect of aspect ratio and surface functionality on mechanical properties and toughening mechanisms. J. Mater. Sci. 51(19), 8764–8790 (2016)

    Article  CAS  Google Scholar 

  21. Prolongo, S., Jiménez-Suárez, A., Moriche, R., Ureña, A.: Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites. Eur. Polymer J. 53, 292–301 (2014)

    Article  CAS  Google Scholar 

  22. Johnson, D., Dobson, B., Coleman, K.: A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 20(5–6), 367–382 (2015)

    Article  CAS  Google Scholar 

  23. Szeluga, U., Kumanek, B., Trzebicka, B.: Synergy in hybrid polymer/nanocarbon composites. A review. Compos. A: Appl. Sci. Manuf. 73:204–231 (2015)

  24. Moosa, A.: Mechanical and Electrical Properties of Graphene Nanoplates and Carbon- Nanotubes Hybrid Epoxy Nanocomposites. Am. J. Mat. Sci. 6(6), 157–165 (2016)

    Google Scholar 

  25. Srivastava, V., Gries, T., Veit, D., Quadflieg, T., Mohr, B., Kolloch, M.: Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng. Fract. Mech. 180, 73–86 (2017)

    Article  Google Scholar 

  26. Li, W., Dichiara, A., Bai, J.: Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos. Sci. Technol. 74, 221–227 (2013)

    Article  CAS  Google Scholar 

  27. Wang, P., Hsieh, T., Chiang, C., Shen, M.: Synergetic Effects of Mechanical Properties on Graphene Nanoplatelet and Multiwalled Carbon Nanotube Hybrids Reinforced Epoxy/Carbon Fiber Composites. J. Nanomater. 1–9 (2015)

  28. Dang, C.Y., Liu, K., Fan, M.X., Zhu, S.Q., Zhao, S.H., Shen, X.J.: Investigation on cryogenic interlaminar shear properties of carbon fabric/epoxy composites improved by graphene oxide-coated glass fibers. Compos. Commun. 22, 2452–2139 (2020)

    Google Scholar 

  29. Azimpour-Shishevan, F., Akbulut, H., Mohtadi-Bonab, MA.: Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites. Polymer Testing. 90 (2020)

  30. Tugrul Seyhan, A., Tanoglu, M., Schulte, K.: Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites. Eng. Fract. Mech. 75(18), 5151–5162 (2008)

    Article  Google Scholar 

  31. Standard test method for mode i interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM Standards (2007)

  32. Ahmad, R., Young, S. J. R., Kinloch, A., Raman, I.: Spectra and Mechanical Properties of Graphene/Polypropylene Nanocomposites. Int. J. Chem. Eng. Appl. 6(1), 1–5 (2015)

  33. Bokobza, L., Zhang, J.: Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym. Lett. 6(7), 601–608 (2012)

    Article  CAS  Google Scholar 

  34. Gresil, M., Wang, Z., Poutrel, Q., Soutis, C.: Thermal diffusivity mapping of graphene based polymer nanocomposites. Sci. Rep. 7(1), (2017)

  35. Tang, L., Wan, Y., Yan, D., Pei, Y., Zhao, L., Li, Y., et al.: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)

    Article  CAS  Google Scholar 

  36. Sun, J., Li, H., Wang, C., Yuan, D., Stubbs, L., He, C.: The Effect of Residual Solvent N′-Dimethylformamide on the Curing Reaction and Mechanical Properties of Epoxy and Lignin Epoxy Composites. Macromol. Chem. Phys. 217(9), 1065–1073 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Graphene Institute for their support in this research. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Gresil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Fig. 11.

Fig. 11
figure 11

Hot press technique temperature and pressure settings

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Soutis, C. & Gresil, M. Fracture Toughness of Hybrid Carbon Fibre/Epoxy Enhanced by Graphene and Carbon Nanotubes. Appl Compos Mater 28, 1111–1125 (2021). https://doi.org/10.1007/s10443-021-09906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-021-09906-x

Keywords

Navigation