Skip to main content
Log in

Influence of fillers on polymeric composite during conventional machining processes: a review

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Nowadays, polymeric composites have emerged as a material highly in demand for advanced structures in various sectors, such as automotive, aerospace, and marine industries, due to their specific mechanical and physical properties. Functional efficiency of these composites significantly depends on their machinability. This encouraged the researchers to present a wide study and research work on polymeric composite. The present paper reviews the research progress on conventional machining of different filler-loaded polymeric composites. It delves into integrated functions in terms of its mechanism and machining responses. This includes aspects such as various weight percentage of filler on the machining responses. It also shows the proper filler loading for the improvement of mechanical properties (i.e., strength and stiffness) and fracture toughness for both intralaminar and interlaminar perspectives. Machining procedure and performance capabilities have been reviewed and depicted in detail as well. A comprehensive summary of the findings along with future perspectives has been included at the end, which might contribute to a greater development of this machining process in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CNT:

Carbon nanotube

MWCNT:

Multi-walled carbon nanotube

ILSS:

Interlaminar shear strength

DF:

Delamination factor

CFRP:

Carbon fiber-reinforced polymer

GFRP:

Glass fiber-reinforced polymer

GRA:

Grey relational analysis

SR:

Surface roughness

FESEM:

Field emission scanning electron microscope

RSM:

Response surface method

ANOVA:

Analysis of variance

FPT:

Feed per tooth

MCT:

Minimum chip thickness

SEM:

Scanning electron microscope

AFM:

Atomic force microscopy

References

  1. Nassar MMA, Arunachalam R, Alzebdeh KI (2016) Machinability of natural fiber reinforced composites: a review. Int J Manuf Technol 88:2985–3004. https://doi.org/10.1007/s00170-016-9010-9

    Article  Google Scholar 

  2. Thakur RK, Singh KK, Ramkumar J (2020) Experimental investigation of abrasive waterjet hole cutting on hybrid carbon/glass composite. Mater Today Proc 21:1551–1558. https://doi.org/10.1016/j.matpr.2019.11.085

    Article  Google Scholar 

  3. Ansari MTA, Singh KK, Azam MS (2018) Fatigue damage analysis of fiber-reinforced polymer composites—a review. J Reinf Plast Compos 37:636–654. https://doi.org/10.1177/0731684418754713

    Article  Google Scholar 

  4. Teti R (2002) Machining of composite materials. CIRP Ann Manuf Techno 51:611–634. https://doi.org/10.1016/S0007-8506(07)61703-X

    Article  Google Scholar 

  5. Yotkaew P, Kositchaiyong A, Wimolmala E, Rosarpitak V, Sombatsompop N (2014) Use of synthetic fibers as co-reinforcing agents in wood/PVC hybrid composites: effect on tribological properties. J Reinf Plast Compos 33:964–976. https://doi.org/10.1177/0731684414521885

    Article  Google Scholar 

  6. Thakur RK, Singh KK (2020) Abrasive waterjet machining of fiber-reinforced composites: a state-of-the-art review. J Braz Soc Mech Sci Eng 42:381. https://doi.org/10.1007/s40430-020-02463-7

    Article  Google Scholar 

  7. Kumar D, Singh KK (2015) An approach towards damage free machining of CFRP and GFRP composite material: a review. Adv Compos Mater 24:49–63. https://doi.org/10.1080/09243046.2014.928966

    Article  Google Scholar 

  8. Rawat P, Singh KK (2015) An impact behavior analysis of CNT-based fiber reinforced composites validated by LS-DYNA: a review. Polym Compos 38:175–184. https://doi.org/10.1002/pc.23573

    Article  Google Scholar 

  9. Shrivastava R, Singh KK (2020) Interlaminar fracture toughness characterization of laminated composites: a review. Polym Rev 60:542–593. https://doi.org/10.1080/15583724.2019.1677708

    Article  Google Scholar 

  10. Gaurav A, Singh KK (2016) Fatigue behavior of FRP composites and CNT-embedded FRP composites: a review. Polym Compos 39:1785–1808. https://doi.org/10.1002/pc.24177

    Article  Google Scholar 

  11. Singh KK, Gaurav A (2018) Effectiveness of short and straight carbon nanotubes on dispersion state and static/dynamic mechanical properties of woven glass fiber-reinforced polymer laminates. Proc Inst Mech Eng L J Mater Des Appl 233:1661–1677. https://doi.org/10.1177/1464420718780890

    Article  Google Scholar 

  12. Singh NK, Singh KK (2014) Review on impact analysis of FRP composites validated by LS-DYNA. Polym Compos 36:1786–1798. https://doi.org/10.1002/pc.23064

    Article  Google Scholar 

  13. Thakur RK, Singh KK (2020) Experimental investigation and optimization of abrasive water jet machining parameter on multi-walled carbon nanotube doped epoxy/carbon laminate. Measurement 164:108093. https://doi.org/10.1016/j.measurement.2020.108093

    Article  Google Scholar 

  14. Agrawal S, Singh KK, Sarkar PK (2014) Impact damage on fiber-reinforced polymer matrix composite - a review. J Compos Mater 48:317–332. https://doi.org/10.1177/0021998312472217

    Article  Google Scholar 

  15. Raj SSR, Dhas JER, Jesuthanam C (2020) Challenges on machining characteristics of natural fiber-reinforced composites – a review. J Reinf Plast Compos. https://doi.org/10.1177/0731684420940773

    Article  Google Scholar 

  16. Thakur RK, Singh KK, Ramkumar J (2020) Delamination analysis and hole quality of hybrid FRP composite using abrasive water jet machining. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.056

    Article  Google Scholar 

  17. Hashish M (2013) Trimming of CFRP aircraft components. WJTA-IMCA conference and expo, Houston, Texas

  18. Katchy EM (2000) Introduction to polymer technology, 1st edn. El Demark, Enugu

    Google Scholar 

  19. Kumar A, Gupta RK (1998) Fundamentals of polymers, International. McGraw Hill, Singapore

    Google Scholar 

  20. Strzemiecka B, Voelkel A, Chmielewska D, Sterzyński T (2014) Influence of different fillers on phenolic resin abrasive composites. Comparison of inverse gas chromatographic and dynamic mechanical-thermal analysis characteristics. Int J Adhes Adhes 51:81–86. https://doi.org/10.1016/j.ijadhadh.2014.02.013

    Article  Google Scholar 

  21. Ishak ZM, Bakar AA (1995) An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR). Eur Polym J 31:259–269. https://doi.org/10.1016/0014-3057(94)00156-1

    Article  Google Scholar 

  22. Semakina OK, Phomenko AN, Leonteva AA, Rymanova IE (2015) Research of surface properties of fillers for polymers. Procedia Chem 15:79–83. https://doi.org/10.1016/j.proche.2015.10.012

    Article  Google Scholar 

  23. Vigneshwaran S, Uthayakumar M, Arumugaprabu V (2017) A review on erosion studies of fiber-reinforced polymer composites. J Reinf Plast Compos 36:1019–1027. https://doi.org/10.1177/0731684417699711

    Article  Google Scholar 

  24. Nayak RK, Dash A, Ray BC (2014) Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites. Procedia Mater Sci 6:1359–1364. https://doi.org/10.1016/j.mspro.2014.07.115

    Article  Google Scholar 

  25. Rothon RN (2002) Particulate fillers for polymers, vol 12. iSmithers Rapra Publishing, United States

    Google Scholar 

  26. Lingaraju D, Ramji K, Rao NBRM, Lakshmi UR (2011) Characterization and prediction of some engineering properties of polymer – clay/silica hybrid nanocomposites through ANN and regression models. Procedia Eng 10:9–18. https://doi.org/10.1016/j.proeng.2011.04.004

    Article  Google Scholar 

  27. Ojha S, Raghavendra G, Acharya SK (2014) A comparative investigation of bio waste filler (wood apple-coconut) reinforced polymer composites. Polym Compos 35:180–185. https://doi.org/10.1002/pc.22648

    Article  Google Scholar 

  28. Che D, Saxena I, Han P, Guo P, Ehmann KF (2014) Machining of carbon fiber reinforced plastics/polymers: a literature review. J Manuf Sci Eng 136:034001. https://doi.org/10.1115/1.4026526

    Article  Google Scholar 

  29. Vinayagamoorthy R (2017) A review on the machining of fiber-reinforced polymeric laminates. J Reinf Plast Compos 37:49–59. https://doi.org/10.1177/0731684417731530

    Article  Google Scholar 

  30. Kumar D, Singh KK, Zitoune R (2016) Experimental investigation of delamination and surface roughness in the drilling of GFRP composite material with different drills. Adv Manuf Polym Compos Sci 2:47–56. https://doi.org/10.1080/20550340.2016.1187434

    Article  Google Scholar 

  31. Ismail SO, Ojo SO, Dhakal HN (2017) Thermo-mechanical modelling of FRP cross-ply composite laminates drilling: delamination damage analysis. Compos Part B Eng 108:45–52. https://doi.org/10.1016/j.compositesb.2016.09.100

    Article  Google Scholar 

  32. Altin Karataş M, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Def Technol 14:318–326. https://doi.org/10.1016/j.dt.2018.02.001

    Article  Google Scholar 

  33. Girot F, Dau F, Gutiérrez-Orrantia ME (2017) New analytical model for delamination of CFRP during drilling. J Mater Process Technol 240:332–343. https://doi.org/10.1016/j.jmatprotec.2016.10.007

    Article  Google Scholar 

  34. Davim JP, Reis P (2003) Drilling carbon fiber reinforced plastics manufactured by autoclave – experimental and statistical study. Mater Des 24:315–324. https://doi.org/10.1016/s0261-3069(03)00062-1

    Article  Google Scholar 

  35. Dydek K, Latko-Durałek P, Boczkowska A, Sałacińskib M, Kozeraa R (2019) Carbon fiber reinforced polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes. Compos Sci Technol 173:110–117. https://doi.org/10.1016/j.compscitech.2019.02.007

    Article  Google Scholar 

  36. Yang Y, Zhao X, Peng G, Liu W (2018) Effects of nitrile rubber and multi-walled carbon nanotubes on damage recovery and physical mechanical properties of carbon fiber–reinforced epoxy composites. High Perform Polym 30:856–863. https://doi.org/10.1177/0954008317733527

    Article  Google Scholar 

  37. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652. https://doi.org/10.1016/j.carbon.2006.02.038

    Article  Google Scholar 

  38. Hawreen A, Bogas JA, Kurda R (2019) Mechanical characterization of concrete reinforced with different types of carbon nanotubes. Arab J Sci Eng 44:8361–8376. https://doi.org/10.1007/s13369-019-04096-y

    Article  Google Scholar 

  39. Yang CK, Lee YR, Hsieh TH, Chen TH, Cheng TC (2018) Mechanical property of multiwall carbon nanotube reinforced polymer composites. Polym Polym Compos 26:99–104. https://doi.org/10.1177/096739111802600112

    Article  Google Scholar 

  40. Li N, Li Y, Zhou J, He Y, Hao X (2015) Drilling delamination and thermal damage of carbon nanotube/carbon fiber reinforced epoxy composites processed by microwave curing. Int J Mach Tools Manuf 97:11–17. https://doi.org/10.1016/j.ijmachtools.2015.06.005

    Article  Google Scholar 

  41. Karimi ZN, Heidary H, Yousefi J, Sadeghi S, Minak G (2018) Experimental investigation on delamination in nanocomposite drilling. FME Transact 46:62–69. https://doi.org/10.5937/fmet1801062Z

    Article  Google Scholar 

  42. Heidary H, Karimi NZ, Minak G (2018) Investigation on delamination and flexural properties in drilling of carbon nanotube/polymer composites. Compos Struct 201:112–120. https://doi.org/10.1016/j.compstruct.2018.06.041

    Article  Google Scholar 

  43. Kumar D, Singh KK (2019) Investigation of delamination and surface quality of machined holes in drilling of multiwalled carbon nanotube doped epoxy/carbon fiber reinforced polymer nanocomposite. Proc Inst Mech Eng L J Mater Des Appl 233:647–663. https://doi.org/10.1177/1464420717692369

    Article  Google Scholar 

  44. Singh KK, Kumar D (2016) Experimental investigation and modelling of drilling on multi-wall carbon nanotube–embedded epoxy/glass fabric polymeric nanocomposites. Proc Inst Mech Eng B J Eng Manuf 232:1943–1959. https://doi.org/10.1177/0954405416682277

    Article  Google Scholar 

  45. Kharwar PK, Verma RK, Singh A (2020) Neural network modeling and combined compromise solution (CoCoSo) method for optimization of drilling performances in polymer nanocomposites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720939165

    Article  Google Scholar 

  46. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  47. Bouhfid R, Arrakhiz Z, Oaiss A (2016) Effect of graphene nanosheets on the mechanical, electrical, and rheological properties of polyamide 6/ acrylonitrile–butadiene–styrene blends. Polym Compos 37:998–1006. https://doi.org/10.1002/pc.23259

    Article  Google Scholar 

  48. Sridharan V, Raja T, Muthukrishnan N (2016) Study of the effect of matrix, fiber treatment and graphene on delamination by drilling jute/epoxy nanohybrid composite. Arab J Sci Eng 41:1883–1894. https://doi.org/10.1007/s13369-015-2005-2

    Article  Google Scholar 

  49. Kumar J, Verma RK, Debnath K (2020) A new approach to control the delamination and thrust force during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. Compos Struct 253:112786. https://doi.org/10.1016/j.compstruct.2020.112786

    Article  Google Scholar 

  50. Çelik YH, Kilickap E, Koçyiğit N (2019) Evaluation of drilling performances of nanocomposites reinforced with graphene and graphene oxide. Int J Adv Manuf Technol 100:2371–2385. https://doi.org/10.1007/s00170-018-2875-z

    Article  Google Scholar 

  51. Yazdi MRS, Razfar MR, Asadnia M (2011) Modelling of the thrust force of the drilling operation on PA6–nanoclay nanocomposites using particle swarm optimization. Proc Inst Mech Eng B J Eng Manuf 225:1757–1771. https://doi.org/10.1177/0954405411399018

    Article  Google Scholar 

  52. Prabhu P, Jawahar P, Balasubramanian M, Mohan TP (2014) Machinability study of hybrid nanoclay-glass fiber reinforced polyester composites. Int J Polym Sci 17:450–457. https://doi.org/10.1155/2013/416483

    Article  Google Scholar 

  53. Ragunath S, Velmurugan C, Kannan T (2017) Optimization of drilling delamination behavior of GFRP/clay nano-composites using RSM and GRA methods. Fibers Polym 18:2400–2409. https://doi.org/10.1007/s12221-017-7420-4

    Article  Google Scholar 

  54. Uysal A (2016) Effects of cutting parameters on drilling performance of carbon black–reinforced polymer composite. Proc Inst Mech Eng B J Eng Manuf 232:1133–1142. https://doi.org/10.1177/0954405416662084

    Article  Google Scholar 

  55. Kumar S, Chauhan SR, Rakesh PK, Singh I, Davim JP (2012) Drilling of glass fiber/vinyl ester composites with fillers. Mater Manuf Process 27:314–319. https://doi.org/10.1080/10426914.2011.585489

    Article  Google Scholar 

  56. Rajmohan T (2019) Experimental investigation and optimization of machining parameters in drilling of fly ash-filled carbon fiber reinforced composites. Part Sci Technol 37:21–30. https://doi.org/10.1080/02726351.2016.1205686

    Article  Google Scholar 

  57. Premnath AA (2018) Drilling studies on carbon fiber-reinforced nano-SiC particles composites using response surface methodology. Part Sci Technol 37:478–486. https://doi.org/10.1080/02726351.2017.1398795

    Article  Google Scholar 

  58. Kaybal HB, Unuvar A, Kaynak Y, Avci A (2019) Evaluation of boron nitride nanoparticles on delamination in drilling carbon fiber epoxy nanocomposite materials. J Compos Mater 54:215–227. https://doi.org/10.1177/0021998319860245

    Article  Google Scholar 

  59. Hocheng H, Puw HY, Huang Y (1993) Preliminary study on milling of unidirectional carbon fiber-reinforced plastics. Compos Manuf 4:103–108. https://doi.org/10.1016/0956-7143(93)90077-l

    Article  Google Scholar 

  60. Karpat Y, Bahtiyar O, Deger B (2012) Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. Int J Mach Tools Manuf 56:79–93. https://doi.org/10.1016/j.ijmachtools.2012.01.001

    Article  Google Scholar 

  61. Kalla D, Sheikh-Ahmad J, Twomey J (2010) Prediction of cutting forces in helical end milling fiber reinforced polymers. Int J Mach Tools Manuf 50:882–891. https://doi.org/10.1016/j.ijmachtools.2010.06.005

    Article  Google Scholar 

  62. Davim JP, Reis P (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J Mater Process Technol 160:160–167. https://doi.org/10.1016/j.jmatprotec.2004.06.003

    Article  Google Scholar 

  63. Denkena B, Boehnke D, Dege JH (2008) Helical milling of CFRP–titanium layer compounds. CIRP J Manuf Sci Technol 1:64–69. https://doi.org/10.1016/j.cirpj.2008.09.009

    Article  Google Scholar 

  64. Samuel J, DeVor RE, Kapoor SG, Hsia KJ (2006) Experimental investigation of the machinability of polycarbonate reinforced with multiwalled carbon nanotubes. J Manuf Sci Eng 128:465–473. https://doi.org/10.1115/1.2137753

    Article  Google Scholar 

  65. Dikshit A, Samuel J, DeVor RE, Kapoor SG (2008) A microstructure-level material model for simulating the machining of carbon nanotube reinforced polymer composites. J Manuf Sci Eng 130:031110. https://doi.org/10.1115/1.2917564

    Article  Google Scholar 

  66. Samuel J, Dikshit A, DeVor RE, Kapoor SG, Hsia KJ (2009) Effect of carbon nanotube (CNT) Loading on the thermomechanical properties and the machinability of CNT-reinforced polymer composites. J Manuf Sci Eng 131:031008. https://doi.org/10.1115/1.3123337

    Article  Google Scholar 

  67. Samuel J, Kapoor SG, DeVor RE, Hsia KJ (2010) Effect of microstructural parameters on the machinability of aligned carbon nanotube composites. J Manuf Sci Eng 132:051012. https://doi.org/10.1115/1.4002495

    Article  Google Scholar 

  68. Mahmoodi M, Mostofa MG, Jun M, Park SS (2013) Characterization and micromilling of flow induced aligned carbon nanotube nanocomposites. J Micro Nano-Manuf 1:01100. https://doi.org/10.1115/1.4023290

    Article  Google Scholar 

  69. Jiang L, Nath C, Samuel J, Kapoor SG (2015) An enhanced microstructure-level finite element machining model for carbon nanotube-polymer composites. J Manuf Sci Eng 137:021009. https://doi.org/10.1115/1.4028200

    Article  Google Scholar 

  70. Zinati RF, Razfar MR (2014) Experimental and modeling investigation of surface roughness in end-milling of polyamide 6/multi-walled carbon nano-tube composite. Int J Adv Manuf Technol 75:979–989. https://doi.org/10.1007/s00170-014-6178-8

    Article  Google Scholar 

  71. Sharma D, Singh KK, Thakur RK (2020) Parametric optimization of surface roughness and delamination damage in end milling operation of GFRP laminate modified with MWCNT. Mater Today Proc 22:2798–2807. https://doi.org/10.1016/j.matpr.2020.03.411

    Article  Google Scholar 

  72. Arora I, Samuel J, Koratkar N (2013) Experimental investigation of the machinability of epoxy reinforced with graphene platelets. J Manuf Sci Eng 135:041007. https://doi.org/10.1115/msec2012-7204

    Article  Google Scholar 

  73. Fu G, Huo D, Shyha I, Pancholi K, Alzahrani B (2020) Experimental investigation on micromachining of epoxy/graphene nano platelet nanocomposites. Int J Adv Manuf Technol 107:3169–3183. https://doi.org/10.1007/s00170-020-05190-4

    Article  Google Scholar 

  74. Kumar MN, Mahmoodi M, TabkhPaz M (2017) Characterization and micro end milling of graphene nano platelet and carbon nanotube filled nanocomposites. J Mater Process Technol 249:96–107. https://doi.org/10.1016/j.jmatprotec.2017.06.005

    Article  Google Scholar 

  75. El-Ghaoui K, Chatelain J-F, Ouellet-Plamondon C (2019) Effect of graphene on machinability of glass fiber reinforced polymer (GFRP). J Manuf Mater Process 3:1–12. https://doi.org/10.3390/jmmp3030078

    Article  Google Scholar 

  76. Thakur RK, Singh KK, Sharma D (2019) Modeling and optimization of surface roughness in end milling of graphene/epoxy nanocomposite. Mater Today Proc 19:302–306. https://doi.org/10.1016/j.matpr.2019.07.213

    Article  Google Scholar 

  77. Thakur RK, Sharma D, Singh KK (2019) Optimization of surface roughness and delamination factor in end milling of graphene modified GFRP using response surface methodology. Mater Today Proc 19:133–139. https://doi.org/10.1016/j.matpr.2019.06.153

    Article  Google Scholar 

  78. Thakur RK, Singh KK, Kumar K (2020) Investigation of milling characteristics in graphene-embedded epoxy/carbon fiber reinforced composite. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.022

    Article  Google Scholar 

  79. Shyha I, Fu GY, Huo D (2018) Micro-machining of nano-polymer composites reinforced with graphene and nano-clay fillers. Key Eng Mater 786:197–205. https://doi.org/10.4028/www.scientific.net/kem.786.197

    Article  Google Scholar 

  80. Kumar K, Singh KK, Thakur RK (2020) Analysis on milling of nanoclay-doped epoxy/carbon laminates using taguchi approach. In: Yadav S, Singh D, Arora P, Kumar H (eds) Proceedings of international conference in mechanical and energy technology smart innovation, systems and technologies, vol 174. Springer, Singapore

    Google Scholar 

  81. Zinati RF, Razfar MR (2013) An investigation of the machinability of PA6/nano-CaCO3 composite. Int J Adv Manuf Technol 68:2489–2497. https://doi.org/10.1007/s00170-013-4875-3

    Article  Google Scholar 

  82. Ferreira JR, Coppini NL, Miranda GWA (1999) Machining optimisation in carbon fiber reinforced composite materials. J Mater Process Technol 92–93:135–140. https://doi.org/10.1016/s0924-0136(99)00221-6

    Article  Google Scholar 

  83. Rajasekaran T, Palanikumar K, Vinayagam BK (2011) Application of fuzzy logic for modeling surface roughness in turning CFRP composites Using CBN tool. Prod Eng Res Dev 5:191–199. https://doi.org/10.1007/s11740-011-0297-y

    Article  Google Scholar 

  84. Jasinevicius RG, Andreeta MRB, Fossa JS, Hernandes AC, Duduch JG, Demont P, Puech P (2008) Brittle and ductile removal modes observed during diamond turning of carbon nanotube composites. Proc Inst Mech Eng B J Eng Manuf 223:1–8. https://doi.org/10.1243/09544054jem1257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Thakur.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, R.K., Singh, K.K. Influence of fillers on polymeric composite during conventional machining processes: a review. J Braz. Soc. Mech. Sci. Eng. 43, 94 (2021). https://doi.org/10.1007/s40430-021-02813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02813-z

Keywords

Navigation