Skip to main content
Log in

Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Residual stresses (RSes) induced by turning processes have a great effect on the material properties of the machined components and their abilities to withstand severe loading conditions (creep, fatigue, and stress corrosion cracking). The final state of RSes in a workpiece depends on its material and on the employed cutting parameters/conditions such as cutting speed, depth of cut, feed speed, cutting tool geometry, wear of the tool, cutting tool geometry, cutting tool coating, and cooling. This study introduces a comprehensive investigation of the effects of different cutting parameters, such as cutting speed (30, 60, and 90 m/min), feed (0.05, 0.1, and 0.3 mm/rev), and depth of cut (0.1, 0.5, and 1 mm) as well as cutting tool geometry such as cutting tool nose radius (0.397, 0.794, and 1.191 mm), and cutting tool coating (coated and uncoated) on the cutting force, maximum cutting temperature, surface microstructure, and surface residual stresses during cutting AISI 1035 alloy steel. The RSes were measured using X-ray diffraction technique. The experiments were designed using Taguchi method based on L18 orthogonal array, and the significance level of different cutting parameters as well as cutting tool properties have been determined via applying analysis of variance. Numerical simulations have been carried out using commercial machining software AdvantEdge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang X-D, Zhang X-M, Ding H (2016) A novel relaxation-free analytical method for prediction of residual stress induced by mechanical load during orthogonal machining. Int J Mech Sci 115–116:299–309. https://doi.org/10.1016/j.ijmecsci.2016.06.024

    Article  Google Scholar 

  2. Elajrami M, Miloud R, Milouki H, Boukhoulda FB (2016) Experimental investigation of the effect of double cold expansion on the residual stresses distribution and on the fatigue life of rivet hole. J Braz Soc Mech Sci Eng 38(8):2527–2532. https://doi.org/10.1007/s40430-015-0381-x

    Article  Google Scholar 

  3. Yazdani Nezhad H, O’Dowd NP (2015) Creep relaxation in the presence of residual stress. Eng Fract Mech 138:250–264. https://doi.org/10.1016/j.engfracmech.2015.03.037

    Article  Google Scholar 

  4. Ghosh S, Rana VPS, Kain V, Mittal V, Baveja SK (2011) Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel. Mater Des 32(7):3823–3831. https://doi.org/10.1016/j.matdes.2011.03.012

    Article  Google Scholar 

  5. Hioki D, Diniz AE, Sinatora A (2013) Influence of HSM cutting parameters on the surface integrity characteristics of hardened AISI H13 steel. J Braz Soc Mech Sci Eng 35(4):537–553. https://doi.org/10.1007/s40430-013-0050-x

    Article  Google Scholar 

  6. Devarajan N, Asundi MK, Somasundaram S (1984) Experimental method for predicting residual stresses due to turning in stainless steel. Exp Tech 8(8):22–26. https://doi.org/10.1111/j.1747-1567.1984.tb01935.x

    Article  Google Scholar 

  7. Huang X, Sun J, Li J, Han X, Xiong Q (2013) An experimental investigation of residual stresses in high-speed end milling 7050-T7451 aluminum alloy. Adv Mech Eng 5:592659. https://doi.org/10.1155/2013/592659

    Article  Google Scholar 

  8. Bobet JL, Masuda C (1996) Measurements of thermal residual stresses in SiC/Ti-15–3 composites. J Therm Stress 19(6):579–593. https://doi.org/10.1080/01495739608946195

    Article  Google Scholar 

  9. Brunel F, Brunel J-F, Dufrénoy P, Demilly F (2013) Prediction of the initial residual stresses in railway wheels induced by manufacturing. J Therm Stress 36(1):37–55. https://doi.org/10.1080/01495739.2012.720542

    Article  Google Scholar 

  10. Miguélez MH, Zaera R, Molinari A, Cheriguene R, Rusinek A (2009) Residual stresses in orthogonal cutting of metals: the effect of thermomechanical coupling parameters and of friction. J Therm Stress 32(3):269–289. https://doi.org/10.1080/01495730802637134

    Article  Google Scholar 

  11. Elsheikh AH, Guo J, Lee K-M (2018) Thermal deflection and thermal stresses in a thin circular plate under an axisymmetric heat source. J Therm Stress. https://doi.org/10.1080/01495739.2018.1482807

    Article  Google Scholar 

  12. Salahshoor M, Guo YB (2014) Finite element simulation and experimental validation of residual stresses in high speed dry milling of biodegradable magnesium–calcium alloys. Int J Mech Sci 80:153–159. https://doi.org/10.1016/j.ijmecsci.2014.01.010

    Article  Google Scholar 

  13. Yang D, Liu Z, Ren X, Zhuang P (2016) Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti–6Al–4V. Int J Mech Sci 108–109:29–38. https://doi.org/10.1016/j.ijmecsci.2016.01.027

    Article  Google Scholar 

  14. Dalewski R, Jachimowicz J, Pietrzakowski M (2010) Simulations of residual stresses in resistance spot welding process. J Therm Stress 33(9):843–857. https://doi.org/10.1080/01495739.2010.482370

    Article  Google Scholar 

  15. Arrazola PJ, Kortabarria A, Madariaga A, Esnaola JA, Fernandez E, Cappellini C, Ulutan D, Özel T (2014) On the machining induced residual stresses in IN718 nickel-based alloy: experiments and predictions with finite element simulation. Simul Model Pract Theory 41:87–103. https://doi.org/10.1016/j.simpat.2013.11.009

    Article  Google Scholar 

  16. Sherafatnia K, Farrahi GH, Mahmoudi AH, Ghasemi A (2016) Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behavior. Mater Sci Eng A 657:309–321. https://doi.org/10.1016/j.msea.2016.01.070

    Article  Google Scholar 

  17. Sebastiani M, Sui T, Korsunsky AM (2017) Residual stress evaluation at the micro- and nano-scale: recent advancements of measurement techniques, validation through modelling, and future challenges. Mater Des 118:204–206. https://doi.org/10.1016/j.matdes.2017.01.025

    Article  Google Scholar 

  18. Buj-Corral I, Vivancos-Calvet J, Setien I, San Sebastian M (2017) Residual stresses induced by honing processes on hardened steel cylinders. Int J Adv Manuf Technol 88(5):2321–2329. https://doi.org/10.1007/s00170-016-8870-3

    Article  Google Scholar 

  19. Wang Z, Denlinger E, Michaleris P, Stoica AD, Ma D, Beese AM (2017) Residual stress mapping in Inconel 625 fabricated through additive manufacturing: method for neutron diffraction measurements to validate thermomechanical model predictions. Mater Des 113:169–177. https://doi.org/10.1016/j.matdes.2016.10.003

    Article  Google Scholar 

  20. Çelik YH, Kilickap E, Güney M (2017) Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti–6Al–4V using CVD and PVD coated tools. J Braz Soc Mech Sci Eng 39(6):2085–2093. https://doi.org/10.1007/s40430-016-0607-6

    Article  Google Scholar 

  21. Bouffioux C, Pesci R, Boman R, Caillet N, Ponthot J-P, Habraken AM (2016) Comparison of residual stresses on long rolled profiles measured by X-ray diffraction, ring core and the sectioning methods and simulated by FE method. Thin-Walled Struct 104:126–134. https://doi.org/10.1016/j.tws.2016.03.017

    Article  Google Scholar 

  22. Ghasemi AR, Mohammadi MM (2016) Residual stress measurement of fiber metal laminates using incremental hole-drilling technique in consideration of the integral method. Int J Mech Sci 114:246–256. https://doi.org/10.1016/j.ijmecsci.2016.05.025

    Article  Google Scholar 

  23. James MN, Newby M, Doubell P, Hattingh DG, Serasli K, Smith DJ (2014) Weld residual stresses near the bimetallic interface in clad RPV steel: a comparison between deep-hole drilling and neutron diffraction data. Nucl Eng Des 274:56–65. https://doi.org/10.1016/j.nucengdes.2014.03.042

    Article  Google Scholar 

  24. Sun Y, Luzin V, Daniel WJT, Meehan PA, Zhang M, Ding S (2017) Development of the slope cutting method for determining the residual stresses in roll formed products. Measurement 100:26–35. https://doi.org/10.1016/j.measurement.2016.12.036

    Article  Google Scholar 

  25. Gadallah R, Tsutsumi S, Hiraoka K, Murakawa H (2015) Prediction of residual stresses induced by low transformation temperature weld wires and its validation using the contour method. Mar Struct 44:232–253. https://doi.org/10.1016/j.marstruc.2015.10.002

    Article  Google Scholar 

  26. Foadian F, Carradó A, Pirling T, Palkowski H (2016) Residual stresses evolution in Cu tubes, cold drawn with tilted dies – Neutron diffraction measurements and finite element simulation. Mater Des 107:163–170. https://doi.org/10.1016/j.matdes.2016.06.028

    Article  Google Scholar 

  27. Mishchenko A, Wu L, da Silva VK, Scotti A (2018) Analysis of residual stresses resulting from the surface preparation for X-ray diffraction measurement. J Braz Soc Mech Sci Eng 40(2):94. https://doi.org/10.1007/s40430-018-1036-5

    Article  Google Scholar 

  28. Lee HH, Gangwar KD, Park K-T, Woo W, Kim HS (2017) Neutron diffraction and finite element analysis of the residual stress distribution of copper processed by equal-channel angular pressing. Mater Sci Eng A 682:691–697. https://doi.org/10.1016/j.msea.2016.11.094

    Article  Google Scholar 

  29. Özel T, Ulutan D (2012) Prediction of machining induced residual stresses in turning of titanium and nickel based alloys with experiments and finite element simulations. CIRP Ann Manuf Technol 61(1):547–550. https://doi.org/10.1016/j.cirp.2012.03.100

    Article  Google Scholar 

  30. Liu CR, Guo YB (2000) Finite element analysis of the effect of sequential cuts and tool–chip friction on residual stresses in a machined layer. Int J Mech Sci 42(6):1069–1086. https://doi.org/10.1016/S0020-7403(99)00042-9

    Article  MATH  Google Scholar 

  31. Wu J, Han RD (2009) A new approach to predicting the maximum temperature in dry drilling based on a finite element model. J Manuf Process 11(1):19–30. https://doi.org/10.1016/j.jmapro.2009.07.001

    Article  Google Scholar 

  32. Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15–28. https://doi.org/10.1016/j.ijmachtools.2007.08.004

    Article  Google Scholar 

  33. Capello E (2006) Residual stresses in turning: part II. Influence of the machined material. J Mater Process Technol 172(3):319–326. https://doi.org/10.1016/j.jmatprotec.2005.10.009

    Article  Google Scholar 

  34. Tsuchida K, Kawada Y, Kodama S (1975) A study on the residual stress distributions by turning. Bull JSME 18(116):123–130. https://doi.org/10.1299/jsme1958.18.123

    Article  Google Scholar 

  35. Gunnberg F, Escursell M, Jacobson M (2006) The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel. J Mater Process Technol 174(1–3):82–90. https://doi.org/10.1016/j.jmatprotec.2005.02.262

    Article  Google Scholar 

  36. Saini S, Ahuja IS, Sharma VS (2013) Modelling the effects of cutting parameters on residual stresses in hard turning of AISI H11 tool steel. Int J Adv Manuf Technol 65(5):667–678. https://doi.org/10.1007/s00170-012-4206-0

    Article  Google Scholar 

  37. Liu M, Takagi J-i, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241. https://doi.org/10.1016/j.jmatprotec.2004.02.038

    Article  Google Scholar 

  38. Outeiro JC, Dias AM, Jawahir IS (2006) On the effects of residual stresses induced by coated and uncoated cutting tools with finite edge radii in turning operations. CIRP Ann Manuf Technol 55(1):111–116. https://doi.org/10.1016/S0007-8506(07)60378-3

    Article  Google Scholar 

  39. Yue C, Wang B, Liu X, Feng H, Cai C (2015) Adiabatic shear mechanisms for the hard cutting process. Chin J Mech Eng 28(3):592–598. https://doi.org/10.3901/cjme.2015.0311.028

    Article  Google Scholar 

  40. Outeiro JC, Umbrello D, M’Saoubi R (2006) Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int J Mach Tools Manuf 46(14):1786–1794. https://doi.org/10.1016/j.ijmachtools.2005.11.013

    Article  Google Scholar 

  41. Kundrák J, Mamalis AG, Szabó G, Pálmai Z, Gyáni K (2016) Numerical examination of residual stresses developing during hard turning at different rake angles. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9229-5

    Article  Google Scholar 

  42. Leppert T, Peng RL (2012) Residual stresses in surface layer after dry and MQL turning of AISI 316L steel. Prod Eng Res Dev 6(4):367–374. https://doi.org/10.1007/s11740-012-0389-3

    Article  Google Scholar 

  43. Berruti T, Lavella M, Gola MM (2009) Residual stresses on Inconel 718 turbine shaft samples after turning. Mach Sci Technol 13(4):543–560. https://doi.org/10.1080/10910340903451472

    Article  Google Scholar 

  44. Cakir MC, ISik Y (2005) Finite element analysis of cutting tools prior to fracture in hard turning operations. Mater Des 26(2):105–112. https://doi.org/10.1016/j.matdes.2004.05.018

    Article  Google Scholar 

  45. Xueping Z, Erwei G, Richard Liu C (2009) Optimization of process parameter of residual stresses for hard turned surfaces. J Mater Process Technol 209(9):4286–4291. https://doi.org/10.1016/j.jmatprotec.2008.10.011

    Article  Google Scholar 

  46. Warren AW, Guo YB (2009) Characteristics of residual stress profiles in hard turned versus ground surfaces with and without a white layer. J Manuf Sci Eng 131(4):041004–041010. https://doi.org/10.1115/1.3159046

    Article  Google Scholar 

  47. Liu CR, Mittal S (1996) Single-step superfinish hard machining: feasibility and feasible cutting conditions. Robot Comput Integr Manuf 12(1):15–27. https://doi.org/10.1016/0736-5845(95)00029-1

    Article  Google Scholar 

  48. Kara F, Aslantaş K, Çiçek A (2016) Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Appl Soft Comput 38:64–74. https://doi.org/10.1016/j.asoc.2015.09.034

    Article  Google Scholar 

  49. Elsheikh AH, Sharshir SW, Abd Elaziz M, Kabeel AE, Guilan W, Haiou Z (2019) Modeling of solar energy systems using artificial neural network: a comprehensive review. Sol Energy 180:622–639. https://doi.org/10.1016/j.solener.2019.01.037

    Article  Google Scholar 

  50. Elsheikh A, Showaib E, Asar A (2013) Artificial neural network based forward kinematics solution for planar parallel manipulators passing through singular configuration. Adv Robot Autom 2(106):2

    Google Scholar 

  51. Deng W, Zhang S, Zhao H, Yang X (2018) A novel fault diagnosis method based on integrating empirical wavelet transform and fuzzy entropy for motor bearing. IEEE Access 6:35042–35056. https://doi.org/10.1109/ACCESS.2018.2834540

    Article  Google Scholar 

  52. Zhao H, Sun M, Deng W, Yang X (2017) A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing. Entropy 19(1):14

    Article  Google Scholar 

  53. Deng W, Xu J, Zhao H (2019) An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem. IEEE Access 7:20281–20292. https://doi.org/10.1109/ACCESS.2019.2897580

    Article  Google Scholar 

  54. Deng W, Zhao H, Zou L, Li G, Yang X, Wu D (2017) A novel collaborative optimization algorithm in solving complex optimization problems. Soft Comput 21(15):4387–4398. https://doi.org/10.1007/s00500-016-2071-8

    Article  Google Scholar 

  55. Elaziz MA, Elsheikh AH, Sharshir SW (2019) Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system. Int J Refrig 102:47–54. https://doi.org/10.1016/j.ijrefrig.2019.03.009

    Article  Google Scholar 

  56. Deng W, Zhao H, Yang X, Xiong J, Sun M, Li B (2017) Study on an improved adaptive PSO algorithm for solving multi-objective gate assignment. Appl Soft Comput 59:288–302. https://doi.org/10.1016/j.asoc.2017.06.004

    Article  Google Scholar 

  57. Elsheikh AH, Abd Elaziz M (2019) Review on applications of particle swarm optimization in solar energy systems. Int J Environ Sci Technol 16(2):1159–1170. https://doi.org/10.1007/s13762-018-1970-x

    Article  Google Scholar 

  58. Deng W, Yao R, Zhao H, Yang X, Li G (2019) A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput 23(7):2445–2462. https://doi.org/10.1007/s00500-017-2940-9

    Article  Google Scholar 

  59. Oliva D, Abd Elaziz M, Elsheikh AH, Ewees AA (2019) A review on meta-heuristics methods for estimating parameters of solar cells. J Power Sources 433:126683

    Article  Google Scholar 

  60. Wyatt JE, Berry JT (2006) A new technique for the determination of superficial residual stresses associated with machining and other manufacturing processes. J Mater Process Technol 171(1):132–140. https://doi.org/10.1016/j.jmatprotec.2005.06.067

    Article  Google Scholar 

  61. García Navas V, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57. https://doi.org/10.1016/j.ijmachtools.2012.05.008

    Article  Google Scholar 

  62. Caruso S, Umbrello D, Outeiro JC, Filice L, Micari F (2011) An experimental investigation of residual stresses in hard machining of AISI 52100 steel. Procedia Eng 19:67–72. https://doi.org/10.1016/j.proeng.2011.11.081

    Article  Google Scholar 

  63. Jang DY, Watkins TR, Kozaczek KJ, Hubbard CR, Cavin OB (1996) Surface residual stresses in machined austenitic stainless steel. Wear 194(1):168–173. https://doi.org/10.1016/0043-1648(95)06838-4

    Article  Google Scholar 

  64. Capello E, Davoli P, Bassanini G, Bisi A (1999) Residual stresses and surface roughness in turning. J Eng Mater Technol 121(3):346–351. https://doi.org/10.1115/1.2812385

    Article  Google Scholar 

  65. Abboud E, Attia H, Shi B, Damir A, Thomson V, Mebrahtu Y (2016) Residual stresses and surface integrity of Ti-alloys during finish turning—guidelines for compressive residual stresses. Procedia CIRP 45:55–58. https://doi.org/10.1016/j.procir.2016.02.069

    Article  Google Scholar 

  66. Madariaga A, Kortabarria A, Hormaetxe E, Garay A, Arrazola PJ (2016) Influence of tool wear on residual stresses when turning Inconel 718. Procedia CIRP 45:267–270. https://doi.org/10.1016/j.procir.2016.02.359

    Article  Google Scholar 

  67. Li W, Withers PJ, Axinte D, Preuss M, Andrews P (2009) Residual stresses in face finish turning of high strength nickel-based superalloy. J Mater Process Technol 209(10):4896–4902. https://doi.org/10.1016/j.jmatprotec.2009.01.012

    Article  Google Scholar 

  68. Javidi A, Rieger U, Eichlseder W (2008) The effect of machining on the surface integrity and fatigue life. Int J Fatigue 30(10–11):2050–2055. https://doi.org/10.1016/j.ijfatigue.2008.01.005

    Article  Google Scholar 

  69. Vigraman T, Narayanasamy R, Ravindran D (2012) Microstructure and mechanical property evaluation of diffusion-bonded joints made between SAE 2205 steel and AISI 1035 steel. Mater Des 35:156–169. https://doi.org/10.1016/j.matdes.2011.09.063

    Article  Google Scholar 

  70. John EB (2007) Handbook of comparative world steel standards, 4th edn. ASTM International, Mayfield

    Google Scholar 

  71. Noyan IC, Cohen JB (1987) Determination of strain and stress fields by diffraction methods. In: Residual stress: measurement by diffraction and interpretation. Springer, New York, pp 117–163. https://doi.org/10.1007/978-1-4613-9570-6_5

    Chapter  Google Scholar 

  72. Ma J, Duong NH, Lei S (2015) Numerical investigation of the performance of microbump textured cutting tool in dry machining of AISI 1045 steel. J Manuf Process 19:194–204. https://doi.org/10.1016/j.jmapro.2014.10.001

    Article  Google Scholar 

  73. Cascón I, Sarasua JA (2015) Mechanistic model for prediction of cutting forces in turning of non-axisymmetric parts. Procedia CIRP 31:435–440. https://doi.org/10.1016/j.procir.2015.03.084

    Article  Google Scholar 

  74. Capello E (2005) Residual stresses in turning: part I: influence of process parameters. J Mater Process Technol 160(2):221–228. https://doi.org/10.1016/j.jmatprotec.2004.06.012

    Article  Google Scholar 

  75. Elsheikh AH, Guo J, Huang Y, Ji J, Lee K-M (2018) Temperature field sensing of a thin-wall component during machining: numerical and experimental investigations. Int J Heat Mass Transf 126:935–945. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.006

    Article  Google Scholar 

  76. Zhang S, Ding T, Li J (2012) Microstructural alteration and microhardness at near-surface of AISI H13 steel by hard milling. Mach Sci Technol 16(3):473–486

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (E050902, E041604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar H. Elsheikh.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, K.h., Elsheikh, A.H., Ashham, M. et al. Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy. J Braz. Soc. Mech. Sci. Eng. 41, 349 (2019). https://doi.org/10.1007/s40430-019-1846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1846-0

Keywords

Navigation