Skip to main content
Log in

CO2 laser ablation of microchannel on PMMA substrate for Koch fractal micromixer

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we mainly study the processing and manufacturing methods of the Koch fractal micromixer on polymethyl methacrylate (PMMA) substrate using a flexible and low-cost CO2 laser system. The structure of Koch fractal microchannel can increase the contact area of the fluids, prolong the mixing time and improve the mixing efficiency of the micromixer. The study focuses on the effect of the CO2 laser system processing power, scanning speed and the number of scanning times on the quality of microchannel. With the increase in processing power and the number of scanning times, the width and depth of the microchannel change more obviously; this contributes to the hot-bonding success of the Koch fractal micromixer, avoiding the hot-bonding failure causes by the overvoltage or overheat. At last, the CO2 laser output power of 7 W and a laser scanning speed of 10 mm/s combining a hot press bonding technique are chosen to fabricate a microfluidic chip within half an hour. The fabrication of microchannel on PMMA substrates with CO2 laser system will have a wide range of application values, resulting in lower costs and easier fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chow AW (2002) Lab-on-a-chip: opportunities for chemical engineering. AIChE J 48(8):1590–1595

    Article  Google Scholar 

  2. Oedit A, Vulto P, Ramautar R, Lindenburg PW, Hankemeier T (2015) Lab-on-a-chip hyphenation with mass spectrometry: strategies for bioanalytical applications. Curr Opin Biotechnol 31:79–85

    Article  Google Scholar 

  3. Wang W, Soper SA (eds) (2006) Bio-MEMS: technologies and applications. CRC Press, Boca Raton

    Google Scholar 

  4. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    Article  Google Scholar 

  5. Pradhan P, Guan J, Lu D et al (2008) A facile microfluidic method for production of liposomes. Anticancer Res 28(2A):943–947

    Google Scholar 

  6. Frommelt T, Kostur M, Wenzel-Schäfer M, Wang PG, Lee LJ, Lee RJ (2008) Microfluidic mixing via acoustically driven chaotic advection. Phys Rev Lett 100(3):034502

    Article  Google Scholar 

  7. Minc N, Fütterer C, Dorfman KD, Bancaud A, Gosse C, Goubault C, Viovy JL (2004) Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Anal Chem 76(13):3770–3776

    Article  Google Scholar 

  8. Bandara GC, Heist C, Remcho VT (2018) Chromatographic separation and visual detection on wicking microfluidic devices: quantitation of Cu2+ in surface-, ground-, and drinking water. Anal Chem 90:2594

    Article  Google Scholar 

  9. Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23(5):677–712

    Article  Google Scholar 

  10. Jia ZJ, Qun Fang A, Fang ZL (2004) Bonding of glass microfluidic chips at room temperatures. Anal Chem 76(18):5597–5602

    Article  Google Scholar 

  11. WO A (2016) Welding method of substrate and membrane of membrane mobile polymer microfluidic chip

  12. Li B (2009) Design and fabrication of a microfluidic chip driven by dielectric elastomers, pp 74935S–74935S-9

  13. Zhang K (2011) Integrations of advanced functional materials and devices for microfluidic applications. Hong Kong Polytechnic University

  14. Boonyasit Y, Maturos T, Sappat A, Jomphoak A, Tuantranont A, Laiwattanapaisal W (2011) Passive micromixer integration with a microfluidic chip for calcium assay based on the arsenazo III method. Biochip J 5(1):1–7

    Article  Google Scholar 

  15. Zukowski K, Chudy M, Dybko A, Brzózka Z (2010) Passive fluidic micromixer created by micromilling and thermal bonding in pmma. Prz Elektrotech 86(10):154–156

    Google Scholar 

  16. Mohammed MI, Desmulliez MPY (2013) The manufacturing of packaged capillary action microfluidic systems by means of CO2, laser processing. Microsyst Technol 19(6):809–818

    Article  Google Scholar 

  17. Wang Z, Chu J, Wang Q, Zhang R (2015) Fabrication of nanochannels using underexposed nanoimprint method. IET Micro Nano Lett 10(1):34–36

    Article  Google Scholar 

  18. Iwai K, Shih KC, Lin X, Brubaker TA, Sochol RD, Lin L (2014) Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 14(19):3790

    Article  Google Scholar 

  19. Chen X, Shen J (2015) Simulation in system-level based on model order reduction for a square-wave micromixer. Int J Nonlinear Sci Numer Simul 16(7):307

    MathSciNet  MATH  Google Scholar 

  20. Nakashima S, Sugioka K, Midorikawa K (2009) Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation. Appl Surf Sci 255(24):9770–9774

    Article  Google Scholar 

  21. Zhang SJ, Shin YC (2017) Effective methods for fabricating trapezoidal shape microchannel of arbitrary dimensions on polymethyl methacrylate (PMMA) substrate by a CO2 laser. Int J Adv Manuf Technol 93(1–4):1–16

    Google Scholar 

  22. Romoli L, Tantussi G, Dini G (2011) Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Opt Lasers Eng 49(3):419–427

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Department of Education of Liaoning Province (JZL201715401), Liaoning BaiQianWan Talents Program (2017) and Scholarship of China National Scholarship Council (201808210025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Additional information

Technical Editor: Márcio Bacci da Silva, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Chen, X. CO2 laser ablation of microchannel on PMMA substrate for Koch fractal micromixer. J Braz. Soc. Mech. Sci. Eng. 41, 45 (2019). https://doi.org/10.1007/s40430-018-1551-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1551-4

Keywords

Navigation