Skip to main content
Log in

Passive micromixer integration with a microfluidic chip for calcium assay based on the arsenazo III method

  • Original Research
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The ability for low reagent consumption and minimum waste production in a miniaturised system has generated great interest in the green chemistry field. Herein, a microfluidic system for calcium assays using the arsenazo III method has been developed. The reaction between arsenazo III and calcium to form a blue-purple coloured complex is measured by an embedded miniature fibre optic spectrometer through absorbance increments at 650 nm. A linear range was obtained from 0.2 to 3 mg dL−1 with a detection limit of 0.138 mg dL−1 (S/N=3). The method exhibited good reproducibility based on low and high calcium tests with control serums, the within-run coefficient of variation (CVs) (4.10% and 3.91%), and the run-to-run CV (4.6%) were obtained. The carry-over effect of the method was also 1.98%, which is acceptable for the current system. When compared to a conventional spectrophotometric method, this portable, microfluidic method correlated highly when evaluating serum samples (r 2=0.985; n=15). This similarity suggests that our proposed system could be used for determining the amount of calcium in serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmeliet, G. et al. Disorders of calcium homeostasis. Best Pract. Res. Clin. Endoc. Metab. 17, 529–546 (2003).

    Article  CAS  Google Scholar 

  2. David, B.E. & Robert, K.R. Disorders of bone. In TIETZ Fundamentals of Clinical Chemistry, 6th Edition, 711–733 (2008).

  3. Themelis, D.G., Tzanavaras, P.D., Anthemidis, A.N. & Stratis, J.A. Direct, selective flow injection spectrophotometric determination of calcium in wines using methylthymol blue and an on-line cascade dilution system. Anal. Chim. Acta 402, 259–266 (1999).

    Article  CAS  Google Scholar 

  4. Cohen, S.A. & Sideman, L. Modification of the ocresolphthalein complexone method for determining calcium. Clin. Chem. 25, 1519–1520 (1979).

    CAS  Google Scholar 

  5. Cowley, D.M., Mottram, B.M., Haling, N.B. & Sinton, T.J. Improved linearity of the calcium-cresolphthalein complexone reaction with sodium acetate. Clin. Chem. 32, 894–895 (1986).

    CAS  Google Scholar 

  6. Michaylova, V. & Ilkova, P. Photometric determination of micro amounts of calcium with arsenazo III. Anal. Chim. Acta 53, 194–198 (1971).

    Article  Google Scholar 

  7. Morgan, B., Artiss, J. & Zak, B. Calcium determination in serum with stable alkaline Arsenazo III and triglyceride clearing. Clin. Chem. 39, 1608–1612 (1993).

    CAS  Google Scholar 

  8. Leary, N., Pembroke, A. & Duggan, P. Single stable reagent (Arsenazo III) for optically robust measurement of calcium in serum and plasma. Clin. Chem. 38, 904 (1992).

    CAS  Google Scholar 

  9. Armenta, S., Garrigues, S. & de la Guardia, M. Green Analytical Chemistry. Trac-Trends Anal. Chem. 27, 497–511 (2008).

    Article  CAS  Google Scholar 

  10. Nguyen, T., Kim, M., Park, J. & Lee, N. An effective passive microfluidic mixer utilizing chaotic advection. Sens. Actuator B-Chem. 132, 172–181 (2008).

    Article  Google Scholar 

  11. Ismagilov, R. et al. Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch. Anal. Chem. 73, 4682–4687 (2001).

    Article  CAS  Google Scholar 

  12. Kenis, P. et al. Fabrication inside microchannels using fluid flow. Accounts Chem. Res. 33, 841–847 (2000).

    Article  CAS  Google Scholar 

  13. Hessel, V., Lwe, H. & Schnfeld, F. Micromixers-a review on passive and active mixing principles. Chem. Eng. Sci. 60, 2479–2501 (2005).

    Article  CAS  Google Scholar 

  14. Nguyen, N. & Wu, Z. Micromixers-a review. J. Micromech. Microeng. 15, R1–R16 (2005).

    Article  Google Scholar 

  15. Bhagat, A., Peterson, E. & Papautsky, I. A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J. Micromech. Microeng. 17, 1017 (2007).

    Article  Google Scholar 

  16. Bhagat, A. & Papautsky, I. Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J. Micromech. Microeng. 18, 085005 (2008).

    Article  Google Scholar 

  17. Songjaroen, T. et al. Portable microfluidic system for determination of urinary creatinine. Anal. Chim. Acta 647, 78–83 (2009).

    Article  CAS  Google Scholar 

  18. Laiwattanapaisal, W. et al. On-chip immunoassay for determination of urinary albumin. Sensors 9, 10066–10079 (2009).

    Article  CAS  Google Scholar 

  19. Lin, Y., Chung, Y. & Wu, C. Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed. Microdevices 9, 215–221 (2007).

    Article  Google Scholar 

  20. Malcik, N., Ferrance, J., Landers, J. & Caglar, P. The performance of a microchip-based fiber optic detection technique for the determination of Ca2+ ions in urine. Sens. Actuator B-Chem. 107, 24–31 (2005).

    Article  Google Scholar 

  21. Caglar, P. et al. A microchip sensor for calcium determination. Anal. Bioanal. Chem. 386, 1303–1312 (2006).

    Article  CAS  Google Scholar 

  22. Haeckel, R. Proposals for the description and measurement of carry-over effects in clinical chemistry. Pure Appl. Chem. 63, 301–306 (1991).

    Article  Google Scholar 

  23. Hossain, S., Ansari, M. & Kim, K. Evaluation of the mixing performance of three passive micromixers. Chem. Eng. J. 150, 492–501 (2009).

    Article  CAS  Google Scholar 

  24. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanida Laiwattanapaisal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonyasit, Y., Maturos, T., Sappat, A. et al. Passive micromixer integration with a microfluidic chip for calcium assay based on the arsenazo III method. BioChip J 5, 1–7 (2011). https://doi.org/10.1007/s13206-011-5101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-011-5101-8

Keywords

Navigation