Skip to main content
Log in

Chromosome numbers in Homalolepis Turcz. and their significance in Simaroubaceae evolution

  • Genetics & Evolutionary Biology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Homalolepis was described by Turczaninow in 1848 and reestablished by Devecchi et al. in 2018, enclosing mostly the extra-Amazonian species previously included in two sections of Simaba Aubl.. We performed the first cytogenetic analysis in Homalolepis and, by surveying chromosome numbers of other Simaroubaceae representatives, reconstructed the evolution of chromosome numbers in the family, using ChromEvol software. The four Homalolepis species showed 2n = 32 and two or four CMA+ bands. In situ hybridization showed a diverse distribution of ribosomal DNA sites (5S and 18S), positioned on the same chromosome pair in H. floribunda (A. St.-Hil.) Devecchi & Pirani or on different chromosome pairs in H. arenaria (Devecchi & Pirani) Devecchi & Pirani. The basic chromosome number here indicated for Simaroubaceae is x = 12, from which chromosome numbers of other genera were derived by ascending dysploidy, with polyploidy occurring in Ailanthus Desf. only. Homalolepis presents x = 16, derived by ascending disploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apples R, Morris R, Gill BS, May CE (1998) Chromosome biology. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  • Baratakke RC, Patil CG (2010) Cytological investigations in poly-gamo-dioecious tree Simarouba glauca DC. Nucleus 53:33–36. https://doi.org/10.1007/s13237-010-0008-7

    Article  Google Scholar 

  • Barros e Silva AE, Soares Filho WS, Guerra M (2013) Linked 5S and 45S rDNA sites are highly conserved through the subfamily Aurantioideae (Rutaceae). Cytogenet Genome Res 140:62–69

    Article  Google Scholar 

  • Bawa KS (1973) Chromosome numbers of tree species of a lowland tropical community. J Arnold Arbor 54:422–434

    Article  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132. https://doi.org/10.1093/aob/mci008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardello LM, Stiefkens LB, Piovano MA (1990) Números cromosómicos en dicotiledóneas argentinas. Bol Soc Argent Bot 26:149–157

    Google Scholar 

  • Clayton JW (2011) Simaroubaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10. Springer, Berlin, pp 408–423

    Google Scholar 

  • Clayton JM, Fernando ES, Soltis PS, Soltis DE (2007) Molecular phylogeny of the tree-of-heaven family (Simaroubaceae) based on chloroplast and nuclear markers. Int J Plant Sci 168:1325–1339

    Article  CAS  Google Scholar 

  • Clayton JW, Soltis PS, Soltis DE (2009) Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales). Syst Biol 58:395–410. https://doi.org/10.1093/sysbio/syp041

    Article  PubMed  Google Scholar 

  • Cronquist A (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants, 3rd edn. George Allen and Unwin, London, UK

    Google Scholar 

  • Desai S (1960) Cytology of rutaceae and simaroubaceae. Cytologia 25:28–35. https://doi.org/10.1508/cytologia.25.28

    Article  Google Scholar 

  • Devecchi MF, Thomas WW, Pirani JR (2018a) Taxonomic revision of the neotropical genus Homalolepis Turcz. (Simaroubaceae). Phytotaxa 366:1–108

    Article  Google Scholar 

  • Devecchi MF, Thomas WW, Plunkett GM, Pirani JR (2018b) Testing the monophyly of Simaba (Simaroubaceae): Evidence from five molecular regions and morphology. Mol Phylogenetics Evol 120:63–82. https://doi.org/10.1016/j.ympev.2017.11.024

    Article  Google Scholar 

  • Devecchi MF, Pirani JR, Thomas WW (2020) Simaroubaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB604257. Accessed on: 02 Apr. 2021

  • Funabiki K (1958) Distribution and polyploidy of angiosperms. II Northern Flora of Japan Kromosomo 37:1268–1275

    Google Scholar 

  • Ghosh R (1970a) Karyomorphological studies of somatic chromosomes in Ailanthus excelsa Roxb., an ornamental and a road-side plant. Broteria 39:3–8

    Google Scholar 

  • Ghosh R (1970b) An analysis of the somatic chromosomes in Quassia amara L. with some remarks on its taxonomic status and affinity. Broteria 39:9–15

    Google Scholar 

  • Gill BS, Bir SS, Singhal VK (1979) IOPB chromosome number reports LXV. Taxon 28:627–637

    Article  Google Scholar 

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31:1914–1922. https://doi.org/10.1093/molbev/msu122

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2000) Chromosome number variation and evolution in monocots. In: Wilson KL (ed) Monocots: Systematics and Evolution. CSIRO, Melbourne, pp 127–136

    Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy concepts and implications. Cytogenet Genome Res. 120:339–350. https://doi.org/10.1159/000121083

    Article  CAS  PubMed  Google Scholar 

  • Guimarães RGS (2018) Estudos citotaxonômicos em Sapindales: estado da arte e evolução dos números cromossômicos. Universidade Estadual de Campinas, Campinas, Dissertação de Mestrado

    Book  Google Scholar 

  • Guimarães RGS, Forni-Martins ER (2021) Chromosome numbers and their evolutionary meaning in the Sapindales order – an overview. Braz J Bot (this issue)

  • Khosla P (1978) Cytosystematics of some hardwood families. Nucleus 21:211–218

    Google Scholar 

  • Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationships among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686. https://doi.org/10.1007/s001220100643

    Article  CAS  Google Scholar 

  • Kumari S, Saggoo MIS, Kaur J (1989) SOCGI plant chromosome number reports VIII. J Cytol Genet 24:179–183

    Google Scholar 

  • Majovsky J (1970) Index of chromosome numbers of Slovakian flora. Acta Fac Rerum Nat Univ Comen, Bot 16:1–26

    Google Scholar 

  • Mangenot S, Mangenot G (1957) Nombres chromosomiques nouveaux chez diverses Dicotyledones et Monocotyledones d’Afrique occidentale. Bull Du Jard Bot’état Brux 27:639. https://doi.org/10.2307/3666891

    Article  Google Scholar 

  • Mangenot S, Mangenot G (1962) Enquête sur les nombres chromosomiques dans une collection d’espèces tropicales. Bull Soc Bot Fr 109:411–447. https://doi.org/10.1080/00378941.1962.10838117

    Article  Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the inference of polyploidy. Syst Biol 59:132–144. https://doi.org/10.1093/sysbio/syp083

    Article  PubMed  Google Scholar 

  • Mehra PN (1976) Cytology of Himalayan hardwoods. Sree Saraswaty Press Ltd., Calcutta

    Google Scholar 

  • Mehra PN, Khosla PK (1969) IOPB Chromosome number reports XX. Taxon 18:213–221

    Article  Google Scholar 

  • Mendes S, Moraes AP, Mirkov TE, Pedrosa-Harand A (2011) Chromosome homeologies and high variation in heterochromatin distribution between Citrus L. and Poncirus Raf. as evidenced by comparative cytogenetic mapping. Chromosome Res 19:521–530. https://doi.org/10.1007/s10577-011-9203-x

    Article  CAS  PubMed  Google Scholar 

  • Mendes S, Régis T, Terol J, Soares Filho WS, Talon M, Pedrosa-Harand A (2020) Integration of mandarin (Citrus reticulata) cytogenetic map with its genome sequence. Genome 63:437–444. https://doi.org/10.1139/gen-2020-0046

    Article  CAS  PubMed  Google Scholar 

  • Mesquita AT, Romero-da Cruz MV, Azevedo ALS, Forni-Martins ER (2019) Chromosome number and genome size diversity in five Solanaceae genera. Caryologia 72:105–115. https://doi.org/10.13128/caryologia-772

    Article  Google Scholar 

  • Moraes AP, Mirkov TE, Guerra M (2008) Mapping the chromosomes of Poncirus trifoliata Raf. by BAC-FISH. Cytogenet Genome Res 121:277–281. https://doi.org/10.1159/000138897

    Article  CAS  PubMed  Google Scholar 

  • Moraes AP, Barros F, Simões AO, Alayon D, Forni-Martins ER (2016) Detecting mechanisms of karyotype evolution in Heterotaxis (Orchidaceae). PLoS ONE 11:e0165960. https://doi.org/10.1371/journal.pone.0165960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran R, Felger R (1968) Castela polyandra, a new species in a new section: union of Holocantha with Castela (Simaroubaceae). Trans San Diego Soc Nat Hist 15:31–40

    Google Scholar 

  • Murin A, Majovsky J (1978) IOPB chromosome number reports LXI. Taxon 27:375–392

    Article  Google Scholar 

  • Nakajima G (1942) Cytological studies in some flowering dioecious plants, with special reference to the sex chromosomes. Cytologia 12:262–270. https://doi.org/10.1508/cytologia.12.262

    Article  Google Scholar 

  • Pathak GN, Singh B (1949) Chromosome numbers in some angiospermous plants. Curr Sci 18:347

    CAS  PubMed  Google Scholar 

  • Pirani JR, Majure LC, Devecchi MF (2021) An updated account of Simaroubaceae with emphasis on American taxa. Braz J Bot (this issue)

  • Qiu F, Ungerer MC (2018) Genomic abundance and transcriptional activity of diverse Gypsy and Copia long terminal repeat retrotransposons in three wild sunflower species. BMC Plant Biol 18:1–8. https://doi.org/10.1186/s12870-017-1223-z

    Article  CAS  Google Scholar 

  • Rambaut, A. (2018) FigTree v. 1.4.4 Available at http://tree.bio.ed.ac.uk/software/figtree

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225

    Article  CAS  Google Scholar 

  • Roa F, Guerra M (2015) Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. https://doi.org/10.1159/000440930

    Article  CAS  PubMed  Google Scholar 

  • Romero-da-Cruz MV, Forni-Martins ER, Urdampilleta JD (2017). In: Marhold K, Kucera J (ed). IAPT/IOPB Chromosome data 24 – Capsicum parvifolium, Solanaceae. Taxon 66: 277 (printed version), E16-E17 (online extended version)

  • Schubert I, Lysak MA (2011) Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genet 27:207–216. https://doi.org/10.1016/j.tig.2011.03.004

    Article  CAS  Google Scholar 

  • Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Springer, New York

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58:307–324

    Article  CAS  Google Scholar 

  • Silva SC, Marques A, Soares Filho WS, Pedrosa-Harand A, Mirkov TE, Guerra M (2011) The Cytogenetic Map of the Poncirus trifoliata (L.) Raf. - A nomenclature system for chromosomes of all citric species. Trop Plant Biol 4:99–105. https://doi.org/10.1007/s12042-011-9072-7

    Article  Google Scholar 

  • Silva SC, Mendes S, Soares Filho WS, Pedrosa-Harand A (2015) Chromosome homologies between Citrus and Poncirus the comparative cytogenetic map of mandarin (Citrus reticulata). Tree Genet Genomes 11:811. https://doi.org/10.1007/s11295-014-0811-4

    Article  Google Scholar 

  • Singhal V, Gill B (1990) Chromosomal studies in some members of Anacardiaceae. J Cytol Genet 25:36–42

    Google Scholar 

  • Stace CA (1991) Plant taxonomy and biosystematics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477

    Article  Google Scholar 

  • Takhtajan A (1980) Outline of the classification of flowering plants. Bot Rev 46:226–359

    Article  Google Scholar 

  • Tobe H (2011) Embryological evidence supports the transfer of Leitneria floridana to the family Simaroubaceae. Ann Mo Bot Gard 98:277–293

    Article  Google Scholar 

  • Turczaninow NS (1848) Decades quarta et quinta. Generum adhunc nom descriptorum. Bull Soc Imp Nat Moscou 21:570–591

    Google Scholar 

  • Urdampilleta JD, Souza AP, Forni-Martins ER, Schneider DRS, Vanzela ALL, Ferrucci MS (2009) Molecular and cytogenetic characterization of an AT-rich satellite DNA family in Urvillea chacoensis Hunz. (Paullinieae, Sapindaceae). Genetica 136:171–177

    Article  CAS  Google Scholar 

  • Urdampilleta JD, Coulleri JP, Ferrucci MS, Forni-Martins ER (2012) Karyotype evolution and phylogenetic analyses in the genus Cardiospermum L. (Paullinieae, Sapindaceae). Plant Biol 15:868–881. https://doi.org/10.1111/j.1438-8677.2012.00679.x

    Article  CAS  PubMed  Google Scholar 

  • Vaio M, Nascimento J, Mendes S, Ibiapino A, Felix LP, Gardner A, Emshwiller E, Fiaschi P, Guerra M (2018) Multiple karyotype changes distinguish two closely related species of Oxalis (O. psoraleoides and O. rhombeo-ovata) and suggest an artificial grouping of section Polymorphae (Oxalidaceae). Bot J Linn Soc 188:269–280

    Google Scholar 

  • Webster G, Miller K (1963) Chromosomes and relationships of Leitneria. Am J Bot 50:638

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

    Chapter  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grants # 2014/18002-2 and # 2016/06572-4). The authors thank Espaço da Escrita—Pró-Reitoria de Pesquisa—UNICAMP—for the language services provided.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ERFM, MVRC and JRP; Methodology: ERFM, MVRC, MFD and RG; Formal analysis and investigation: ERFM, MVRC and RG; Writing—original draft preparation: ERFM, MVRC and RG; Writing—review and editing: all authors; Funding acquisition: ERFM and JRP; Supervision: ERFM. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Eliana R. Forni-Martins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-da-Cruz, M.V., Guimarães, R., Devecchi, M.F. et al. Chromosome numbers in Homalolepis Turcz. and their significance in Simaroubaceae evolution. Braz. J. Bot 45, 93–101 (2022). https://doi.org/10.1007/s40415-021-00729-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-021-00729-5

Keywords

Navigation