Skip to main content

Advertisement

Log in

The Expected Effects of Climate Change on Tree Growth and Wood Quality in Southern Africa

  • Systematic Student Review
  • Published:
Springer Science Reviews

Abstract

Long-term changes of average values and extremes of environmental factors that affect plant growth, development and survival, such as solar radiation, temperature, precipitation and vapour pressure deficit have been observed in Southern Africa. While evidence of a strong relationship between tree growth and climate, particularly water availability and temperature, has been found in several studies, not much research has been done on how the indigenous (hardwood) trees growing in the sub-region have adapted to changing climatic conditions. Trees are expected to grow under more limiting conditions in future—the mean annual temperature is expected to rise, while the mean annual precipitation is forecasted to decline across much of the region. The presence of growth rings in some tropical trees provides a means of understanding how growth and wood anatomy have been influenced by climate variability and change over time and allows a prediction of how tree growth and wood quality will change with the expected climate change in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad P, Prasad MNV (eds) (2012) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York

    Google Scholar 

  2. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30(3):258–270

    Article  CAS  PubMed  Google Scholar 

  3. Allaby M (2006) Temperate forests. Infobase Publishing, New York

    Google Scholar 

  4. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Gonzalez P (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

    Article  Google Scholar 

  5. Anderson JT, Panetta AM, Mitchell-Olds T (2012) Evolutionary and ecological responses to anthropogenic climate change update on anthropogenic climate change. Plant Physiol 160(4):1728–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anyamba A, Eastman JR (1996) Interannual variability of NDVI over Africa and its relation to El Niño/Southern Oscillation. Remote Sens 17(13):2533–2548

    Article  Google Scholar 

  7. Archer ER, Tadross MA (2009) Climate change and desertification in South Africa—science and response. Afr J Range Forage Sci 26(3):127–131

    Article  Google Scholar 

  8. Aregheore EM (2009) Country pasture/forage resource profiles: Zambia. FAO, Rome

    Google Scholar 

  9. Aroca R (2012) Plant responses to drought stress. In: Aroca R (ed) From morphological to molecular features. Springer, Berlin

    Google Scholar 

  10. Baas P, Wheeler E (2011) Wood anatomy and climate change. In: Hodkinson TR, Jones MB, Waldren S, Parnell JAN (eds) Climate change, ecology and systematics. Cambridge University Press, Cambridge

    Google Scholar 

  11. Bareja BG (2011) Climatic factors can promote or inhibit plant growth and development http://www.cropsreview.com/climatic-factors.html Accessed 25 November 2015

  12. Barnett J, Jeronimidis G (eds) (2009) Wood quality and its biological basis. Wiley, New York

    Google Scholar 

  13. Battaglia M, Sanda P (1997) Modelling site productivity of Eucalyptus globules in response to climatic and site factors. Aust J Plant Physiol 24:831–850

    Article  Google Scholar 

  14. Blasing TJ (2016) Recent greenhouse gas concentrations, Oak Ridge National Laboratory, United State Department of Energy. http://cdiac.ornl.gov/pns/current_ghg.html Accessed 30 January 2017

  15. Bond WJ, van Wilgen BW (1994) Fire and plants. Chapman-Hall, London

    Google Scholar 

  16. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75(5):1437–1449

    Article  Google Scholar 

  17. Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20(3):239–247

    Article  Google Scholar 

  18. Bossel H (1991) Modelling forest dynamics: moving from description to explanation. For Ecol Manag 42(1):129–142

    Article  Google Scholar 

  19. Bradley RS, Jones PD, Jouzel J (1996) Climatic variations and mechanisms of the last 2000 years. Springer, Berlin

    Google Scholar 

  20. Briffa KR (1994) Mid and late Holocene climate change: evidence from tree growth in northern Fennoscandia. In: Funnell RLF, Kay RLF (eds) Paleoclimate of the last glacial/interglacial cycle. NERC Earth Sciences Directorate, Swindon

    Google Scholar 

  21. Cambridge Dictionary of Science and Technology (CDST) (1988) Cambridge University Press, Cambridge, pp. 166–167

  22. Chapin FS, Rincon E, Huante P (1993) Environmental responses of plants and ecosystems as predictors of the impact of global change. J Biosci 8(4):515–524

    Article  Google Scholar 

  23. Cheney NP, Gould JS, Catchpole WR (1998) Prediction of fire spread in grasslands. Int J Wildl Fire 8(1):1–13

    Article  Google Scholar 

  24. Chidumayo E, Okali D, Kowero G, Larwanou M (eds) (2011) Climate change and African forest and wildlife resources. African Forest Forum, Nairobi

    Google Scholar 

  25. Claesson J, Nycander J (2013) Combined effect of global warming and increased CO2-concentration on vegetation growth in water-limited conditions. Ecol Model 256:23–30

    Article  CAS  Google Scholar 

  26. Coder KD (1999) Drought damage to trees. University of Georgia, Cooperative Extension Service, Forest Resources

  27. Conway D, Mould C, Bewke W (2004) Over one century of rainfall and temperature observations in Addis Ababa, Ethiopia. Int J Climatol 24(1):77–91

    Article  Google Scholar 

  28. Cook E, Bird T, Peterson M, Barbetti M, Buckley B, D’Arrigo R, Francey R (1992) Climatic change over the last millennium in Tasmania reconstructed from tree-rings. Holocene 2(3):205–217

    Article  Google Scholar 

  29. Corcuera L, Camarero JJ, Gil-Pelegrín E (2004) Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. IAWA J 25(2):185–204

    Article  Google Scholar 

  30. Glantz MH, Betsill M, Crandall, C (2007) Food security in Southern Africa: assessing the use and value of ENSO Information. http://www.isse.ucar.edu/sadc/index.html Accessed 7 April 2016

  31. Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38(1):127–145

    Article  Google Scholar 

  32. Davies WJ (2006) Responses of plant growth and functioning to changes in water supply in a changing climate. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell Publishing, Oxford, pp 96–117

    Chapter  Google Scholar 

  33. Davis CL (2011) Climate risk and vulnerability: a handbook for Southern Africa. CSIR. http://www.csir.co.za/docs/SADC%20Handbook%202011_final_email.pdf Accessed 4 April 2016

  34. De Melo-Abreu JP, Daldoum MA, Andrews PL, Bastos TX, De Groot WJ, Fleming R, Harrison J (2010) Applications of meteorology to forestry and non-forest trees

  35. De Micco V, Aronne G (2012) Morpho-anatomical traits for plant adaptation to drought. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 37–61

    Chapter  Google Scholar 

  36. Decoteau D (1998) Plant physiology: environmental factors and photosynthesis. Department of Horticulture, Pennsylvania State University

  37. Dilley M (2000) Reducing vulnerability to climate variability in southern Africa: the growing role of climate information. Clim Change 45:63–73

    Article  Google Scholar 

  38. Dobbertin M, Eilmann B, Bleuler P, Giuggiola A, Pannatier EG, Landolt W, Rigling A (2010) Effect of irrigation on needle morphology, shoot and stem growth in a drought-exposed Pinus sylvestris forest. Tree Physiol 30(3):346–360

    Article  PubMed  Google Scholar 

  39. Downes GM, Wimmer R, Evans R (2002) Understanding wood formation: gains to commercial forestry through tree-ring research. Dendrochronologia 20(1):37–51

    Article  Google Scholar 

  40. Downes GM, Drew D, Battaglia M, Schulze D (2009) Measuring and modelling stem growth and wood formation: an overview. Dendrochronologia 27(2):147–157

    Article  Google Scholar 

  41. Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Biol 48(1):609–639

    Article  CAS  Google Scholar 

  42. Duque AS, Farinha AP, da Silva AB, de Almeida AM, Santos D, da Silva JM, de Sousa Araújo S (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  43. Dye P, Jacobs S, Dew D (2004) Verification of 3-PG growth and water-use predictions in twelve Eucalyptus plantation stands in Zululand, South Africa. For Ecol Manag 193:197–218

    Article  Google Scholar 

  44. Eagleman JR (1985) Meteorology: the atmosphere in action. Wadsworth Publishing Co., Belmont, p 394

    Google Scholar 

  45. Edmond JB, Senn TL, Andrews FS, Halfacre RG (1979) Fundamentals of horticulture. Tata McGraw-Hill, New York

    Google Scholar 

  46. Egli P, Maurer S, Günthardt-Goerg MS, Körner C (1998) Effects of elevated CO2 and soil quality on leaf gas exchange and above-ground growth in beech–spruce model ecosystems. New Phytol 140(2):185–196

    Article  Google Scholar 

  47. Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62(8):2763–2771

    Article  CAS  PubMed  Google Scholar 

  48. Berlyn GP, Everett, TH, Weber, LM (2015) Tree structure and growth. https://global.britannica.com/plant/tree/Tree-structure-and-growth Accessed 9 November 2016

  49. Fanshawe DB (1956) Regeneration from clear felling. For New North, Rhod, p 11

    Google Scholar 

  50. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Berlin, pp. 153–188

  51. February EC, Stock WD, Bond WJ, Le Roux DJ (1995) Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and two hybrids. IAWA J 16(3):269–276

    Article  Google Scholar 

  52. Ferguson DMH (1959) The role of water in plant growth. USGA J Turf Manag 11:30–32

    Google Scholar 

  53. Fichtler E, Trouet V, Beeckman H, Coppin P, Worbes M (2004) Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 18(4):442–451

    Article  Google Scholar 

  54. Fontes L, Bontemps JD, Bugmann H, van Oijen M, Gracia C, Kramer K, Lindner M, Rötzer T, Skovsgaard JP (2010) Models for supporting forest management in a changing environment. For Syst 19:8–29

    Google Scholar 

  55. Fowells HA, Means JE (1990) The tree and its environment. In: Burns RM, Honkala BH (eds) Silvics of North America. USDA Forest Service Agricultural Handbook 654, vol 2. Hardwoods, Washington, DC, pp 1–11

    Google Scholar 

  56. Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  57. Frost P (1996) The ecology of Miombo woodlands. In: Campbell B (ed) The Miombo in transition: woodlands and welfare in Africa. Centre for International Forestry Research, Bogor, pp 11–57

    Google Scholar 

  58. Funder M, Mweemba CE, Nyambe I (2013) The climate change agenda in Zambia National interests and the role of development cooperation. DIIS Working Paper 13. http://www.diis.dk/files/media/publications/import/extra/wp2013-13_ccri_zambia_mfu_web.pdf. Accessed 5 Feb 2016

  59. Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37(3):263–285

    Article  CAS  Google Scholar 

  60. Geldenhuys CJ (2005) Basic guidelines for silviculture and forest management practices in Mozambique. Report Number FW-04/05. Forestwood cc., Pretoria

  61. Gindaba J (2004) Water and nutrient relations of selected tree species of Ethiopia. Dissertation University of Stellenbosch, Stellenbosch

  62. Grabner M, Cherubini P, Rozenberg P, Hannrup B (2006) Summer drought and low earlywood density induce intra-annual radial cracks in conifers. Scand J For Res 21(2):151–157

    Article  Google Scholar 

  63. Granados J, Körner C (2002) In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob Change Biol 8(11):1109–1117

    Article  Google Scholar 

  64. Grene R, Vasquez-Robinet C, Bohnert HJ (2011) Molecular biology and physiological genomics of dehydration stress. In: Luttge U, Beck E, Bartels D (eds) Plant desiccation tolerance. Springer, Berlin, pp 255–287

    Chapter  Google Scholar 

  65. Grundy IM (2006) Age and determination of Miombo species Brachystegia spiciformis (Leguminosae-Caesalpinoideal) in Zimbabwe using growth rings. S Afr For J 2006:5–16

    Google Scholar 

  66. Gush MB (1999) A verification of the 3-PG forest growth and water use model for Eucalyptus grandis. CSIR Report ENV-P-I 98216.CSIR, Pretoria, South Africa

  67. Haferkamp MR (1988) Environmental factors affecting plant productivity. In: Achieving efficient use of rangeland resources. Fort Keogh Research symposium, Miles City, pp. 27–36

  68. Harfouche A, Meilan R, Altman A (2014) Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol 34(11):1181–1198

    Article  CAS  PubMed  Google Scholar 

  69. Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. InTech Publisher, Rijeka

    Google Scholar 

  70. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  71. Hemsley AR, Poole I, Linnean Society of London (2004) The evolution of plant physiology. Elsevier Academic Press, Amsterdam

    Google Scholar 

  72. Howarth RB (2012) Climate projections for Southern Africa

  73. Hulme M, Doherty R, Ngara T, New M, Low PS (2005) Global warming and African

  74. IPCC (2001a) Climate change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai. X, Maskell K, Johnson CA. (eds.) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  75. IPCC (2007) Climate change 2007: synthesis report. contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland

  76. IPCC (2012) Glossary of terms. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K., Allen SK, Tignor M, and Midgley PM. (eds.) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (IPCC). Cambridge University Press, Cambridge, pp. 555–564

  77. IPCC (2013) Summary for policymakers. In: Stocker, TF, D Qin, G.-K. Plattner, M. Tignor, SK. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bexand PM. Midgley (eds.) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp. 1–30. doi:10.1017/CBO9781107415324.004

  78. IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Chapter 22. Africa (p. 7)

  79. Jacoby GC, D’Arrigo RD (1997) Tree rings, carbon dioxide, and climatic change. Proc Natl Acad Sci 94(16):8350–8353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jajoo A (2014) Stress and photosynthesis. In: Browse J, and Farmer E. 2013. Current Opinion in Plant Biology. Physiol Metab 16(3):271–396

    Google Scholar 

  81. Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  82. Jenks MA, Hasegawa PM (2014) Plant abiotic stress, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  83. Jooste GHC (2015) Periodic drought effects on afro-temperate forests in the Southern Cape of South Africa. MSc Thesis. Stellenbosch University, South Africa

  84. Jozsa LA (1994) Discussion of Wood quality attributes and their practical implications

  85. Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8(9):1010–1020

    Article  Google Scholar 

  86. Jury MR (2013) Climate trends in southern Africa. S Afr J Sci 109(1–2):1–11

    Google Scholar 

  87. Keeling CD, Whorf TP (2009) Atmospheric CO2 records from sites in the SIO air sampling network. Trends: a compendium of data on global change, pp. 16–26

  88. Keenan T, Sabate S, Gracia C (2008) Forest eco-physiological models and carbon sequestration. In: Managing forest ecosystems: the challenge of climate change. Springer, Berlin, pp. 83–102

  89. Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. Vegetatio 104(1):65–75

    Article  Google Scholar 

  90. Kirschbaum MU, Fischlin A, Cannell MGR, Cruz RVO, Galinski W, Cramer WP (1995) Climate change impacts on forests. Clim Change 95–129

  91. Körner C (2006) Significance of temperature in plant life. Plant growth and climate change. Blackwell, Oxford, pp 48–69

    Chapter  Google Scholar 

  92. Körner C, Arnone JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257(5077):1672–1675

    Article  PubMed  Google Scholar 

  93. Kotecha, P (2014) The Zambia country report of the Southern African Regional Universities Association (SARUA) climate change counts mapping study. http://www.sarua.org/files/SARUA-Vol2No11-Zambia-Country-Report.pdf Accessed 9 Nov 2016

  94. Kozlowski TT (1984) Wisconsin woodlands: how forest trees grow. Wisconsin Coop. Ext. Serv. G3277. http://learningstore.uwex.edu/assets/pdfs/G3277.pdf. Accessed 19 Nov 2015

  95. Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Elsevier, North Holland

    Google Scholar 

  96. Kramer PJ, Kozloski TT (1960) Physiology of trees. McGraw-Hill, New York

    Google Scholar 

  97. Kruger AC, Shongwe S (2004) Temperature trends in South Africa: 1960–2003. Int J Climatol 24(15):1929–1945

    Article  Google Scholar 

  98. Lambers H, Chapin FS III, Pons TL (1998) Plant water relations. Springer, New York, pp 154–209

    Google Scholar 

  99. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Book  Google Scholar 

  100. Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Prather M (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  101. Lesolle D (2012) SADC policy paper on climate change: assessing the policy options for SADC member states. SADC Research & Policy Paper Series 01/2012

  102. Lichtenthaler HK (1998) The stress concept in plants: an introduction. Ann N Y Acad Sci 851:187–198

    Article  CAS  PubMed  Google Scholar 

  103. Lindesay JA (1988) South African rainfall, the southern oscillation and a southern hemisphere semi-annual cycle. J Climatol 8:17–30. doi:10.1002/joc.3370080103

    Article  Google Scholar 

  104. Lindholm M, Eronen M (2000) A reconstruction of mid-summer temperatures from ring-widths of Scots pine since AD 50 in northern Fennoscandia. Geogr Ann A 82A:527–535

    Article  Google Scholar 

  105. Louw JH (1997) A site-growth study of Eucalyptus grandis in the Mpumalanga escarpment area. South Afr For J 180(1):1–14

    Google Scholar 

  106. Macedo AF (2012) Abiotic stress responses in plants: metabolism to productivity. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York, pp 41–61

    Chapter  Google Scholar 

  107. Macias-Fauria M, Michaletz ST, Johnson EA (2011) Predicting climate change effects on wildfires requires linking processes across scales. Wiley Interdiscip Rev 2(1):99–112

    Google Scholar 

  108. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Magaña Rueda, V (2007) Regional climate projections. Climate change, 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, University Press, Cambridge, Chapter 11, pp. 847–940

  109. Mason SJ (2001) El Niño, climate change, and Southern African climate. Environmetrics 12(4):327–345

    Article  Google Scholar 

  110. Mason SJ, Jury MR (1997) Climatic variability and change over southern Africa: a reflection on underlying processes. Prog Phys Geogr 21(1):23–50

    Article  Google Scholar 

  111. Matala J, Ojansuu R, Peltola H, Sievänen R, Kellomäki S (2005) Introducing effects of temperature and CO2 elevation on tree growth into a statistical growth and yield model. Ecol Model 181(2):173–190

    Article  CAS  Google Scholar 

  112. Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: response to high temperature stress. J Photochem Photobiol B 137(2014):116–126

    Article  CAS  PubMed  Google Scholar 

  113. Maximov NA (1931) The physiological significance of the xeromorphic structure of plants. J Ecol 19:272–282

    Article  Google Scholar 

  114. McSweeney C; New M, Lizcano G (2008) UNDP country profiles—Zambia. http://www.geog.ox.ac.uk/research/climate/projects/undp-cp/UNDP_reports/Zambia/Zambia.hires.report.pdf. Accessed 27 Aug 2015

  115. Ministry of Tourism, Environment and Natural Resources (MTENR) (2010) National Climate Change Response Strategy. GRZ

  116. Morecroft MD, Paterson JS (2006) Effects of temperature and precipitation changes on plant communities. Plant Growth Clim Change. doi:10.1002/9780470988695.ch7

    Google Scholar 

  117. Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque JF, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele JP, Zurek M (2008) Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Technical summary. Intergovernmental Panel on Climate Change, Geneva, p 25

    Google Scholar 

  118. Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–88

    Article  Google Scholar 

  119. Nabeshima E, Kubo T, Hiura T (2010) Variation in tree diameter growth in response to the weather conditions and tree size in deciduous broad-leaved trees. For Ecol Manag 259(6):1055–1066

    Article  Google Scholar 

  120. Naidoo S, Zboňák A, Pammenter NW, Ahmed F (2007) Assessing the effects of water availability and soil characteristics on selected wood properties of E grandis in South Africa. IUFRO, Durban

    Google Scholar 

  121. Naidoo S, Davis C, van Garderen EA (2013) Forests, rangelands and climate change in southern Africa. Forests and Climate Change Working Paper No. 12. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  122. Nath CD, Dattaraja HS, Suresh HS, Joshi NV, Sukumar R (2006) Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India. J Biosci 31(5):651–669

    Article  PubMed  Google Scholar 

  123. New M (2015) Are semi-arid regions climate change hot-spots? Evidence from Southern Africa. http://acdi.uct.ac.za/blog/are-semi-arid-regions-climate-change-hot-spots-evidence-southern-africa#sthash.1E1H8HVb.dpuf. Accessed 5 April 2016

  124. New M, Hewitson B, Stephenson DB, Tsiga A, Kruger A, Manhique A, Mbambalala E (2006) Evidence of trends in daily climate extremes over southern and west Africa. J Geophys Res 111:D14102

    Article  Google Scholar 

  125. Nilsen E, Orcutt DM (1996) The physiology of plants under stress—abiotic factors. Wiley, New York

    Google Scholar 

  126. Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceuleman R (1999) Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ 22:683–714

    Article  CAS  Google Scholar 

  127. Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2—do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  128. Odhiambo BO (2014) The protective role of bark against fire damage: a comparative study on selected introduced and indigenous tree species in the Western Cape, South Africa. Trees 28(2):555–565

    Article  CAS  Google Scholar 

  129. Odhiambo BO, Meincken, M, Seifert T (in press) The effect of surface fire on tree ring growth of Pinus radiata trees. Ann For Sci

  130. Parry ML, Canziani OF, Palutikof JP, Van der Linden PJ, Hanson CE (2007) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, 2007. Climate Change 2007: Working group II: impacts, adaptation and vulnerability

  131. Patakas A (2012) Abiotic stress-induced morphological and anatomical changes in plants. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York

    Google Scholar 

  132. Pettorelli N, Chauvenet ALM, Duffy JP, Cornforth WA, Meillere A, Baillie JEM (2012) Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecol Ind 20:269–276

    Article  Google Scholar 

  133. Polge H, Keller R (1968) Influence of water supply on the internal structure of annual rings: little irrigation experiment on Scotch pines. Ann Sci For (Paris) 25:125–133

    Google Scholar 

  134. Punches J (2004) Tree growth, forest management and their implications for wood quality. PNW 76—A Pacific Northwest Extension Publication. Oregon State University

  135. Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59(3):435–444

    Article  CAS  PubMed  Google Scholar 

  136. Reason CJC, Mulenga H (1999) Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean. Int J Climatol 19(15):1651–1673

    Article  Google Scholar 

  137. Reason CJC, Landman W, Tennant W (2006) Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. BAMS 87:941–955

    Article  Google Scholar 

  138. Rehman S, Harris PJC, Ashraf M (2005) Stress environments and their impact on crop production. Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York, pp 3–18

    Google Scholar 

  139. Reich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA (2016) Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531(7596):633–636

    Article  CAS  PubMed  Google Scholar 

  140. Richard Y, Fauchereau N, Poccard I, Rouault M, Trzaska S (2001) 20th century droughts in southern Africa: spatial and temporal variability, teleconnections with oceanic and atmospheric conditions. Int J Climatol 21(7):873–885

    Article  Google Scholar 

  141. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115(8):1606–1626

    Article  Google Scholar 

  142. Rötzer T, Seifert T, Pretzsch H (2009) Above and below ground carbon dynamics in a mixed beech and spruce stand influenced by environmental changes. Eur J Forest Res 128(2):171–182

    Article  CAS  Google Scholar 

  143. Rötzer T, Seifert T, Gayler S, Priesack E, Pretzsch H (2012) Effects of stress and defence allocation on tree growth: Simulation results at individual and stand level. In: Matyssek R et al (eds) Growth and defence in plants. Ecological studies. Springer, Berlin

    Google Scholar 

  144. Ryan MG (2010) Temperature and tree growth. Tree Physiol 30:667–668

    Article  PubMed  Google Scholar 

  145. Ryan CM, Williams M (2011) How does fire intensity and frequency affect Miombo woodland tree populations and biomass? Ecol Appl 21:48–60

    Article  PubMed  Google Scholar 

  146. Sass-Klaassen U, Chowdhury MQ, Sterck FJ, Zweifel R (2007) Effects of water availability on the growth and tree morphology of Quercus pubescens Willd. and Pinus sylvestris L. in the Valais, Switzerland. In: TRACE-Tree Rings in archaeology, climatology and ecology, proceedings of the DENDROSYMPOSIUM, vol. 5. Tervuren, Belgium, pp. 206–217, 20–22 April 2006

  147. Schweingruber FH (1988) Tree rings. Reidel, Dordrecht

    Book  Google Scholar 

  148. Schweingruber FH (1993) Trees and wood in dendrochronology: morphological, anatomical, and tree-ring analytical characteristics of trees frequently used in dendrochronology. Springer-Verlag, Berlin

    Book  Google Scholar 

  149. Schweingruber FH (1996) Tree rings and environment: dendroecology. Paul Haupt AG Bern

  150. Schweingruber FH (2007) Wood structure and environment. Springer, Berlin

    Google Scholar 

  151. Schweingruber FH, Bartholin TS, Schär E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566

    Article  Google Scholar 

  152. Seifert T, Seifert S, Seydack A, Durheim G, von Gadow K (2014) Competition effects in an Afrotemperate forest. For Ecosyst 1(13):1–15

    Google Scholar 

  153. Shmulsky R, Jones PD (2011) Forest products and wood science. Wiley, Chichester

    Book  Google Scholar 

  154. South African Weather Service (SAWS) (2016) How does ENSO affect South Africa? http://www.weathersa.co.za/learning/climate-questions/35-how-does-enso-affect-south-africa Accessed 7 April 2016

  155. Syampungani S, Geledenhuys C, Chirwa PW (2010) Age and growth rate determination using growth rings of selected Miombo woodland species in charcoal and slash and burn regrowth stands in Zambia. J Ecol Nat Environ 2(8):167–174

    Google Scholar 

  156. Tadross M, Johnston P (2012) ICLEI—local governments for sustainability—Africa climate systems regional report: Southern Africa. http://www.resilientafrica.org/Resources/Final%20Resources/ICLEI%20Africa_5%20City%20Adaptation%20Network_Climate%20Systems%20Regional%20Report_Southern%20Africa.pdf. Accessed 2 April 2016

  157. Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development. Sinauer Associates, Incorporated

    Google Scholar 

  158. Tans P, Keeling R (2014) Trends in atmospheric carbon dioxide. National oceanic and atmospheric administration. Global Greenhouse Gas Reference Network. http://www.esrl.noaa.gov/gmd/ccgg/trends/ Accessed 31 January 2017

  159. Taub D (2010) Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Educ Knowl 3(10):21

    Google Scholar 

  160. Teskey RO, Bongarten BC, Cregg BM, Dougherty PM, Hennessey TC (1987) Physiology and genetics of tree growth response to moisture and temperature stress: an examination of the characteristics of loblolly pine (Pinustaeda L.). Tree Physiol 3:41–61

    Article  CAS  PubMed  Google Scholar 

  161. Trouet V, Haneca K, Coppin P, Beeckman H (2001) Tree ring analysis of Brachystegia spiciformis and Isoberlinia tomentosa: evaluation of the enso-signal in the Miombo woodland of eastern Africa. IAWA J 22(4):385–399

    Article  Google Scholar 

  162. Trouet V, Esper J, Beeckman H (2010) Climate/growth relationships of Brachystegia spiciformis from the Miombo woodland in south central Africa. Dendrochronologia 28(3):161–171

    Article  Google Scholar 

  163. Trouet V, Mukelabai M, Verheyden A, Beeckman H (2012) Cambial growth season of brevi-deciduous Brachystegia spiciformis trees from south central Africa restricted to less than four months. PLoS ONE 7(10):e47364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tsoumis G (1991) Science and technology of wood: structure, properties, utilization, vol 115. Van Nostrand Reinhold, New York

    Google Scholar 

  165. Turnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Griffin KL (2001) Responses of leaf respiration to temperature and leaf characteristics in three deciduous tree species vary with site water availability. Tree Physiol 21:571–578

    Article  CAS  PubMed  Google Scholar 

  166. UNFCCC (2011) Fact sheet: climate change science—the status of climate change science today. https://unfccc.int/files/press/backgrounders/application/pdf/press_factsh_science.pdf Accessed 4 July 2015

  167. Usman MT, Reason CJC (2004) Dry spell frequencies and their variability over southern Africa. Clim Res 26(3):199–211

    Article  Google Scholar 

  168. Vaughan A (2015) Global carbon dioxide levels break 400 ppm milestone. The Guardian

  169. Vorasoot N, Songsri P, Akkasaeng C, Jogloy S, Patanothai A (2003) Effect of water stress on yield and agronomic characters of peanut (Arachishypogaea L.). Songklanakarin. J Sci Technol 25(3):283–288

    Google Scholar 

  170. Ward JS, Worthley TE, Smallidge PJ, Bennett KP (2006) North-eastern forest regeneration handbook. A guide for forest owners, harvesting practitioners, and public officials. USDA Forest Service, North-eastern Area State and Private Forestry, Newtown Square

  171. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30(6):669–688

    Article  PubMed  Google Scholar 

  172. Weis E, Berry JA (1987) Plants and high temperature stress. Sympos Soc Exp Biol 42:329–346

    Google Scholar 

  173. Wertin TM (2010) The effect of elevated [CO2] and elevated temperature on tree growth and physiology.uga

  174. Wigley TML (1999) The science of climate change: global and U.S. perspective. Pew Centre in Global Climate Change, Arlington, Virginia

  175. Worbes M (1992) Occurrence of seasonal climate and tree-ring research in the tropics. Lundqua Report (Sweden)

  176. Worbes M (1995) How to measure growth dynamics in tropical trees a review. IAWA J 16(4):337–351

    Article  Google Scholar 

  177. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87(3):391–403

    Article  Google Scholar 

  178. Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20(1):217–231

    Article  Google Scholar 

  179. World Meteorological Organization (2015) The Climate in Africa: 2013. WMO-No. 1147

  180. Würth MKR, Winter K, Körner C (1998) In situ responses to elevated CO2 in tropical forest understorey plants. Funct Ecol 12(6):886–895

    Article  Google Scholar 

  181. Würth MKR, Winter K, Körner C (1998) Leaf carbohydrate responses to CO2 enrichment at the top of a tropical forest. Oecologia 116(1–2):18–25

    PubMed  Google Scholar 

  182. Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119(1–2):101–117

    Article  CAS  PubMed  Google Scholar 

  183. Zhang SY (2003) Wood quality attributes and their impacts on wood utilization. In: XII World Forestry Congress, Quebec City, Canada

  184. Ziervogel G, New M, van Garderen EA, Midgley G, Taylor A, Hamann R, Warburton M (2014) Climate change impacts and adaptation in South Africa. Wiley Interdiscip Rev 5(5):605–620

    Google Scholar 

  185. Ziska LH, Bunce JA (2006) Plant responses to rising atmospheric carbon dioxide. Plant growth and climate change. Blackwell Publishing, Oxford, pp 17–47

    Book  Google Scholar 

  186. Zuidema PA, Baker PJ, Groenendijk P, Schippers P, van der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18(8):413–419

    Article  CAS  PubMed  Google Scholar 

  187. Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57(6):1445–1459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding support from the Copperbelt University (Zambia), and the National Research Foundation (NRF), South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Meincken.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Endorsed by Martina Meincken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munalula, F., Seifert, T. & Meincken, M. The Expected Effects of Climate Change on Tree Growth and Wood Quality in Southern Africa. Springer Science Reviews 4, 99–111 (2016). https://doi.org/10.1007/s40362-017-0042-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-017-0042-9

Keywords

Navigation