Skip to main content

Advertisement

Log in

Clinical application of radioiodinated antibodies: where are we?

  • Mini-Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Eradication of cancer still remains an upsetting issue despite our increased understanding of the molecular basis of carcinogenesis. Factors such as the molecular heterogeneity of some tumours and initial diagnosis at advanced stages hamper effective disease treatment. Given the ineffectiveness of current treatments, the development of newer therapeutic modalities to address clinical unmet needs is still mandatory. Radioimmunotherapy (RIT) that combines the use of specific antibodies against tumour-associated antigens with the cytotoxic properties of therapeutic radionuclides is amongst those approaches. The potential of monoclonal antibodies to complement current treatment protocols may bring a significant improvement to the overall therapeutic outcomes of oncologic disorders. RIT permits the delivery of a high dose of therapeutic radiation to cancer cells, while minimizing the exposure of normal cells. 131I and 90Y have been used in > 95% of clinical RIT trials and represent the current standard to which all other radionuclides are compared. Both β-particle-emitting isotopes qualify for RIT because of their favourable emission characteristics and availability and flexible radiochemistry. The importance of radioiodine in nuclear medicine together with the success of radioiodinated antibody-based drugs in the clinical setup prompted us to provide an updated overview of the application of radioiodinated antibodies in RIT and anticipate potential relevant accomplishments in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

L8A4:

EGFRvIII-targeting monoclonal antibodies

Hepama-1:

Anti-HCC monoclonal antibody

L6:

Tumour-associated antigen

[125I]-SGMIB:

N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate

131I-chTNT-1/B mAb:

Cotara®

131I-ERIC-1:

Labelled monoclonal antibody against NCAM

131I-L19SIP:

Radretumab

131I-UJ13A:

Labelled monoclonal antibody against NCAM

18F-FDG:

18F-fluorodeoxyglucose

3F8:

Murine monoclonal IgG3 antibody against GD2

A33 antigen:

Transmembrane protein expressed almost exclusively by intestinal epithelial cells

AFP:

Alpha-fetoprotein

alpha-IFN:

Alpha interferon

ASCO:

American Society of Clinical Oncology

B72.3:

Monoclonal anti-TAG-72 antibody

BC:

Breast cancer

BC-2, BC-4, 81C6, ST2146, ST2485, F16, P12:

Murine antibodies against tenascin-C

BT-474:

Human breast carcinoma cell line (HER2+, ER+)

BTD:

Breakthrough therapy designation

c, ch :

Chimeric

C5:

Complement protein

CA125:

Cancer antigen 125

CaPan1:

Human pancreatic ductal adenocarcinoma cell line

CC49:

Monoclonal anti-TAG-72 antibody

CD:

Cluster of differentiation

CDR:

Complementarity-determining region

CEA:

Carcinoembryonic antigen

CED:

Convection-enhanced delivery

ch81C6:

Chimeric antibody against tenascin-C

CHOP:

Cyclophosphamide-Adriamycin-Oncovin-prednisone

CLM:

Colorectal liver metastasis

COL-1:

Monoclonal antibody specific for CEA

CR:

Complete response

CRC:

Colorectal cancer

cRIT:

Compartmental radioimmunotherapy

CT:

Computed tomography

CTV:

Clinical target volume

CVP:

Cyclophosphamide–vincristine–prednisolone

DLBCL:

Diffuse large B-cell lymphoma

DLT:

Dose-limiting toxicity

DNA:

Deoxyribonucleic acid

EDB:

Extra domain B of fibronectin

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMA:

European Medicines Agency

EpCAM, KSA, KS1/4 or 17–1 antigen:

Epithelial cell adhesion molecule

F(ab′), F(ab′)2:

Antibody fragments

FA8H1:

Murine–human anti-VEGFR2 chimeric Fab

FDA:

Food and Drug Administration

FL:

Follicular lymphoma

FN:

Fibronectin

GBM:

Glioblastoma multiforme

GD2:

Disialoganglioside

GLOBOCAN:

Global cancer incidence, mortality and prevalence

GP38:

Glycoprotein 38

GSK:

Glaxo Smith Kline

HAb18G/CD147:

Hepatocellular carcinoma-associated antigen

HAMA:

Human anti-murine antibody

HACA:

Human anti-chimeric antibody

HCC:

Hepatocellular carcinoma

HER2:

Human epidermal growth factor receptor 2

HMFG:

Human milk fat globule

IgE, IgG:

Immunoglobulin

IL:

Interleukin

ic:

Intracavitary

ip:

Intraperitoneal

it:

Intratumoural

iv:

Intravenous

kDa:

Kilodalton

LNCaP cells:

Androgen-sensitive human prostate adenocarcinoma cells

LQC:

Last qualifying chemotherapy

LS-174 T:

Human colon cancer cell line

m :

Murine

MA:

Meconium antigen

mAb:

Monoclonal antibody

mAb806:

EGFRvIII-targeting monoclonal antibodies

mCRPC:

Metastatic castration-resistant prostate cancer

MDA-MB-453:

Breast cancer cell line (AR+, ER, PR, HER2/neu)

MG:

Malignant glioma

MOv:

Murine monoclonal antibody against the epitope of human folate-binding protein

MSKCC:

Memorial Sloan Kettering Cancer Center

MTD:

Maximum tolerated dose

MUC:

Mucin

NCA:

Nonspecific cross-reacting antigen

NCAM:

Neural cell adhesion molecule

NED:

No evidence of disease

NHL:

Non-Hodgkin’s lymphoma

NP:

Antibody against CEA

OC:

Ovarian cancer

OC125:

Murine monoclonal antibody that recognizes the antigenic determinant CA125

OS:

Overall survival

PAM4:

Monoclonal antibody with high specificity for pancreatic ductal adenocarcinoma

PD1:

Programmed cell death protein

PET:

Positron emission tomography

PFS:

Progression-free survival

PLAP:

Placental alkaline phosphatase

PR:

Partial remission

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

rec:

Recombinant

RIS:

Radioimmunoscintigraphy

RIT:

Radioimmunotherapy

RSV:

Respiratory syncytial virus

scFv:

Single-chain variable fragment

SCRC:

Surgery-created resection cavities

SIP:

Small immunoprotein

SPECT:

Single-photon emission computed tomography

SWOG:

Southwest Oncology Group

TAG-72:

Tumour-associated glycoprotein 72

TNF:

Tumour necrosis factor

TNT:

Tumour necrosis therapy

VEGF:

Vascular endothelial growth factor

WBRT:

Whole brain radiation treatment

References

  1. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. https://doi.org/10.1038/256495a0

    Article  CAS  PubMed  Google Scholar 

  2. Shepard H, Phillips G, Thanos C, Feldnnann M (2017) Developments in therapy with monoclonal antibodies and related proteins. Clin Med 17:220–232. https://doi.org/10.7861/clinmedicine.17-3-220

    Article  Google Scholar 

  3. Lu R, Hwang Y, Liu I, Lee C, Tsai H, Li H et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. https://doi.org/10.1186/s12929-019-0592-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jain M, Gupta S, Kaur S, Ponnusamy M, Batra S (2013) Emerging trends for radioimmunotherapy in solid tumours. Cancer Biother Radiopharm 28:639–650. https://doi.org/10.1089/cbr.2013.1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jain M, Venkatraman G, Batra S (2007) Optimization of Radioimmunotherapy of solid tumours: biological impediments and their modulation. Clin Cancer Res 13:1374–1382. https://doi.org/10.1158/1078-0432.CCR-06-2436

    Article  CAS  PubMed  Google Scholar 

  6. Carrasquillo J, Sugarbaker P, Colcher D, Reynolds J, Esteban J, Bryant G et al (1988) Peritoneal carcinomatosis-Imaging with intraperitoneal injection of i–131-labeled b723 monoclonal-antibody. Radiology 167:35–40. https://doi.org/10.1148/radiology.167.1.3347742

    Article  CAS  PubMed  Google Scholar 

  7. Milenic D, Yokota T, Filpula D, Finkelman M, Dodd S, Wood J et al (1991) Construction, binding-properties, metabolism, and tumour targeting of a single-chain FV derived from the pancarcinoma monoclonal-antibody CC49. Can Res 51:6363–6371 (PMID: 1933899)

    CAS  Google Scholar 

  8. Sharkey R, Mottahennessy C, Pawlyk D, Siegel J, Goldenberg D (1990) Biodistribution and radiation-dose estimates for yttrium-labeled and iodine-labeled monoclonal-antibody IGG and fragments in nude-mice bearing human colonic tumour xenografts. Cancer Res 50:2330–2336

    CAS  PubMed  Google Scholar 

  9. Sharkey R, Goldenberg D (2011) Cancer radioimmunotherapy. Immunotherapy 3:349–370. https://doi.org/10.2217/imt.10.114|10.2217/IMT.10.114

    Article  PubMed  Google Scholar 

  10. Strohl W (2018) Current progress in innovative engineered antibodies. Protein Cell 9:86–120. https://doi.org/10.1007/s13238-017-0457-8

    Article  CAS  PubMed  Google Scholar 

  11. Batra S, Jain M, Wittel U, Chauhan S, Colcher D (2002) Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol 13:603–608. https://doi.org/10.1016/S0958-1669(02)00352-X

    Article  CAS  PubMed  Google Scholar 

  12. Russeva M, Adams G (2004) Radioimmunotherapy with engineered antibodies. Expert Opin Biol Ther 4:217–231. https://doi.org/10.1517/14712598.4.2.217

    Article  CAS  PubMed  Google Scholar 

  13. Kassis A (2008) Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med 38:358–366. https://doi.org/10.1053/j.semnuclmed.2008.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Meredith R, Khazaeli M, Plott W, Spencer S, Wheeler R, Brady L et al (1995) Initial clinical-evaluation of iodine-125-labeled chimeric 17–1A for metastatic colon-cancer. J Nucl Med 36:2229–2233 (PMID: 8523110)

    CAS  PubMed  Google Scholar 

  15. Markoe A, Brady L, Woo D, Amendola B, Karlsson U, Fisher M et al (1990) Treatment of gastrointestinal cancer using monoclonal antibodies. Front Radiat Ther Oncol 24:214–224. https://doi.org/10.1159/000417788

    Article  CAS  PubMed  Google Scholar 

  16. Welt S, Scott A, Divgi C, Kemeny N, Finn R, Daghighian F et al (1996) Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol 14:1787–1797. https://doi.org/10.1200/JCO.1996.14.6.1787

    Article  CAS  PubMed  Google Scholar 

  17. Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki P et al (2009) Noninternalizing monoclonal antibodies are suitable candidates for I-125 radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med 50:2033–2041. https://doi.org/10.2967/jnumed.109.066993

    Article  PubMed  Google Scholar 

  18. Ferlay J, Colombet M, Soerjomataram I, Parkin D, Pineros M, Znaor A et al (2021) Cancer statistics for the year 2020: an overview. Int J Cancer 149:778–789. https://doi.org/10.1002/ijc.33588

    Article  CAS  Google Scholar 

  19. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa S et al (1987) Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal-antibodies with tumour-restricted specificity. Int J Cancer 39:297–303. https://doi.org/10.1002/ijc.2910390306

    Article  CAS  PubMed  Google Scholar 

  20. Mantovani L, Miotti S, Menard S, Canevari S, Raspagliesi F, Bottini C et al (1994) Folate binding-protein distribution in normal-tissues and biological-fluids from ovarian-carcinoma patients as detected by the monoclonal-antibodies MOV18 and MOV19. Eur J Cancer 30A:363–369. https://doi.org/10.1016/0959-8049(94)90257-7

    Article  CAS  PubMed  Google Scholar 

  21. Veggian R, Fasolato S, Menard S, Minucci D, Pizzetti P, Regazzoni M et al (1989) Immunohistochemical reactivity of a monoclonal-antibody prepared against human ovarian-carcinoma on normal and pathological female genital tissues. Tumouri 75:510–513

    Article  CAS  Google Scholar 

  22. Li P, DelVecchio S, Fonti R, Carriero M, Potena M, Botti G et al (1996) Local concentration of folate binding protein GP38 in sections of human ovarian carcinoma by in vitro quantitative autoradiography. J Nucl Med 37:665–672 (PMID: 2481353)

    CAS  PubMed  Google Scholar 

  23. Crippa F, Buraggi G, Dire E, Gasparini M, Seregni E, CanevarI S et al (1991) Radioimmunoscintigraphy of ovarian-cancer with the MOV18 monoclonal-antibody. Eur J Cancer 27:724–729. https://doi.org/10.1016/0277-5379(91)90174-C

    Article  CAS  PubMed  Google Scholar 

  24. Molthoff C, Buist M, Kenemans P, Pinedo H, Boven E (1992) Experimental and clinical analysis of the characteristics of a chimeric monoclonal-antibody, MOV18, reactive with an ovarian cancer-associated antigen. J Nucl Med 33:2000–2005

    CAS  PubMed  Google Scholar 

  25. Buist M, Kenemans P, Denhollander W, Vermorken J, Molthoff C, Burger C et al (1993) Kinetics and tissue distribution of the radiolabeled chimeric monoclonal-antibody MOV18 IGG and F(AB’)(2) fragments in ovarian-carcinoma patients. Can Res 53:5413–5418

    CAS  Google Scholar 

  26. Crippa F, Bolis G, Seregni E, Gavoni N, Scarfone G, Ferraris C et al (1995) single-dose intraperitoneal radioimmunotherapy with the murine monoclonal-antibody I-131 MOV18 - Clinical-results in patients with minimal residual disease of ovarian-cancer. Eur J Cancer 31A:686–690. https://doi.org/10.1016/0959-8049(94)00454-D

    Article  CAS  PubMed  Google Scholar 

  27. Molthoff C, Prinssen H, Kenemans P, van Hof A, den Hollander W, Verheijen R (1997) Escalating protein doses of chimeric monoclonal antibody MOv18 immunoglobulin G in ovarian carcinoma patients: A phase I study. Cancer 80:2712–2720. https://doi.org/10.1002/(SICI)1097-0142(19971215)80:12+%3c2712::AID-CNCR50%3e3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  28. van Rijswijk R, Hoekman K, Burger C, Verheijen R, Vermorken J (1997) Experience with intraperitoneal cisplatin and etoposide and iv sodium thiosulphate protection in ovarian cancer patients with either pathologically complete response or minimal residual disease. Ann Oncol 8:1235–1241. https://doi.org/10.1023/A:1008296202198

    Article  PubMed  Google Scholar 

  29. Buijs W, Tibben J, Boerman O, Molthoff C, Massuger L, Koenders E et al (1998) Dosimetric analysis of chimeric monoclonal antibody cMOv18 IgG in ovarian carcinoma patients after intraperitoneal and intravenous administration. Eur J Nucl Med 25:1552–1561. https://doi.org/10.1007/s002590050335

    Article  CAS  PubMed  Google Scholar 

  30. Van Zantenr-Pzybysz I, Molthoff C, Roos J, Verheijen R, Van Hof A, Buist M, et al. Influence of the route of administration on targeting of ovarian cancer with the chimeric monoclonal antibody MO: I.v. vs. i.p. Int J Cancer. 2001;92:106–14. doi:https://doi.org/10.1002/1097-0215(200102)9999:9999<::AID-IJC1145>3.0.CO;2-I.

  31. Gendler S (2001) MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 6:339–353. https://doi.org/10.1023/A:1011379725811

    Article  CAS  PubMed  Google Scholar 

  32. Mukherjee P, Madsen C, Ginardi A, Tinder T, Jacobs T, Parker J et al (2003) Mucin 1-specific immunotherapy in a mouse model of spontaneous breast cancer. J Immunother 26:47–62. https://doi.org/10.1097/00002371-200301000-00006

    Article  CAS  PubMed  Google Scholar 

  33. Epenetos A, Mather S, Granowska M, Nimmon C, Hawkins L, Britton K et al (1982) Targeting of iodine-123-labeled tumour-associated monoclonal-antibodies to ovarian, breast, and gastrointestinal tumours. Lancet 2:999–1005

    Article  CAS  PubMed  Google Scholar 

  34. Epenetos A, Shepherd J, Britton K, Mather S, Taylor-Papadimitriou J, Granowska M et al (1985) I-123 Radioiodinated antibody imaging of occult ovarian-cancer. Cancer 55:984–987. https://doi.org/10.1002/1097-0142(19850301)55:5%3C984::AID-CNCR2820550511%3E3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  35. Epenetos A, Munro A, Stewart S, Rampling R, Lambert H, Mckenzie C et al (1987) Antibody-guided irradiation of advanced ovarian-cancer with intraperitoneally administered radiolabeled monoclonal-antibodies. J Clin Oncol 5:1890–1899. https://doi.org/10.1200/JCO.1987.5.12.1890

    Article  CAS  PubMed  Google Scholar 

  36. Wessels B, Rogus R (1984) Radionuclide selection and model absorbed dose calculations for radiolabeled tumour associated antibodies. Med Phys 11:638–645. https://doi.org/10.1118/1.595559

    Article  CAS  PubMed  Google Scholar 

  37. Hird V, Maraveyas A, Snook D, Dhokia B, Soutter W, Meares C et al (1993) Adjuvant therapy of ovarian-cancer with radioactive monoclonal-antibody. Br J Cancer 68:403–406. https://doi.org/10.1038/bjc.1993.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verheijen R, Massuger L, Benigno B, Epenetos A, Lopes A, Soper J et al (2006) Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol 24:571–578. https://doi.org/10.1200/JCO.2005.02.5973

    Article  CAS  PubMed  Google Scholar 

  39. Oei A, Verheijen R, Seiden M, Benigno B, Lopes A, Soper J et al (2007) Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int J Cancer 120:2710–2714. https://doi.org/10.1002/ijc.22663

    Article  CAS  PubMed  Google Scholar 

  40. Madiyalakan R, Sykes T, Dharampaul S, Sykes C, Baum R, Hor G et al (1995) Antiidiotype induction therapy - evidence for the induction of immune-response through the idiotype network in patients with ovarian-cancer after administration of anti-CA125 murine monoclonal-antibody B43.13. Hybridoma 14:199–203. https://doi.org/10.1089/hyb.1995.14.199

    Article  CAS  PubMed  Google Scholar 

  41. Moseley K, Battaile A, Knapp R, Haisma H (1988) Localization of radiolabeled f(ab’)2 fragments of monoclonal-antibodies in nude-mice bearing intraperitoneally growing human ovarian-cancer xenografts. Int J Cancer 42:368–372. https://doi.org/10.1002/ijc.2910420311

    Article  CAS  PubMed  Google Scholar 

  42. Haisma H, Moseley K, Battaile A, Griffiths T, Knapp R (1988) Distribution and pharmacokinetics of radiolabeled monoclonal-antibody OC-125 After intravenous and intraperitoneal administration in gynecologic tumours. Am J Obstet Gynecol 159:843–848. https://doi.org/10.1016/S0002-9378(88)80150-9

    Article  CAS  PubMed  Google Scholar 

  43. Finkler N, Muto M, Kassis A, Weadock K, Tumeh S, Zurawski V et al (1989) Intraperitoneal radiolabeled OC 125 in patients with advanced ovarian-cancer. Gynecol Oncol 34:339–344. https://doi.org/10.1016/0090-8258(89)90169-8

    Article  CAS  PubMed  Google Scholar 

  44. Muto M, Finkler N, Kassis A, Howes A, Anderson L, Lau C et al (1992) Intraperitoneal radioimmunotherapy of refractory ovarian-carcinoma utilizing iodine-131-labeled monoclonal-antibody OC125. Gynecol Oncol 45:265–272. https://doi.org/10.1016/0090-8258(92)90302-Y

    Article  CAS  PubMed  Google Scholar 

  45. Mahe M, Fumoleau P, Fabbro M, Guastalla J, Faurous P, Chauvot P et al (1999) A phase II study of intraperitoneal radioimmunotherapy with iodine-131-labeled monoclonal antibody OC-125 in patients with residual ovarian carcinoma. Clin Cancer Res 5:3249S-S3253

    CAS  PubMed  Google Scholar 

  46. Benham F, Povey M, Harris H (1978) Placental-like alkaline-phosphatase in malignant and benign ovarian tumours. Clin Chim Acta 86:201–215. https://doi.org/10.1016/0009-8981(78)90134-1

    Article  CAS  PubMed  Google Scholar 

  47. Sunderland C, Davies J, Stirrat G (1984) Immunohistology of normal and ovarian-cancer tissue with a monoclonal-antibody to placental alkaline-phosphatase. Can Res 44:4496–4502

    CAS  Google Scholar 

  48. Kosmas C, Kalofonos H, Hird V, Epenetos A (1998) Monoclonal antibody targeting of ovarian carcinoma. Oncology 55:435–446. https://doi.org/10.1159/000011892

    Article  CAS  PubMed  Google Scholar 

  49. Epenetos A, Carr D, Johnson P, Bodmer W, Lavender J (1986) Antibody-guided radiolocalization of tumours in patients with testicular or ovarian-cancer using 2 radioiodinated monoclonal-antibodies to placental alkaline-phosphatase. Br J Radiol 59:117–125. https://doi.org/10.1259/0007-1285-59-698-117

    Article  CAS  PubMed  Google Scholar 

  50. Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  51. Gold P, Freedman S (1965) Specific carcinoembryonic antigens of human digestive system. J Exp Med 122:467. https://doi.org/10.1084/jem.122.3.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shively J, Beatty J (1985) CEA-related antigens - molecular-biology and clinical-significance. CRC Crit Rev Oncol Hematol 2:355–399. https://doi.org/10.1016/S1040-8428(85)80008-1

    Article  CAS  Google Scholar 

  53. Hefta L, Neumaier M, Shively J (1998) Kinetic and affinity constants of epitope specific anti-carcinoembryonic antigen (CEA) monoclonal antibodies for CEA and engineered CEA domain constructs. Immunotechnology 4:49–57. https://doi.org/10.1016/S1380-2933(98)00004-9

    Article  CAS  PubMed  Google Scholar 

  54. Lane D, Eagle K, Begent R, Hopestone L, Green A, Casey J et al (1994) Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labeled antibody to carcinoembryonic antigen - Phase I/II study with comparative biodistribution of intact and F(ab’)(2) antibodies. Br J Cancer 70:521–525. https://doi.org/10.1038/bjc.1994.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wahl R, Parker C, Philpott G (1983) Improved radioimaging and tumour-localization with monoclonaL F(ab’)2. J Nucl Med 24:316–325

    CAS  PubMed  Google Scholar 

  56. Buchegger F, Pelegrin A, Delaloye B, BischofdelaloyE A, Mach J (1990) Iodine-131-labeled mAb F(ab’)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon-carcinoma grafted in nude-mice. J Nucl Med 31:1035–1044

    CAS  PubMed  Google Scholar 

  57. Pedley R, Boden J, Boden R, Dale R, Begent R (1993) Comparative radioimmunotherapy using intact of F(ab’)2 fragments of I-131 anti-CEA antibody in a colonic xenograft model. Br J Cancer 68:69–73. https://doi.org/10.1038/bjc.1993.288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Primus F, Newell K, Blue A, Goldenberg D (1983) Immunological heterogeneity of carcinoembryonic antigen-antigenic determinants on carcinoembryonic antigen distinguished by monoclonal-antibodies. Can Res 43:686–692

    CAS  Google Scholar 

  59. Primus F, Kuhns W, Goldenberg D (1983) Immunological heterogeneity of carcinoembryonic antigen—immunohistochemical detection of carcinoembryonic antigen determinants in colonic tumours with monoclonal-antibodies. Can Res 43:693–701

    CAS  Google Scholar 

  60. Burtin P, Chavanel G, Hendrick J, Frenoy N (1986) Antigenic variants of the nonspecific cross-reacting antigen (NCA). J Immunol 137:839–845

    CAS  PubMed  Google Scholar 

  61. Sharkey R, Goldenberg D, Goldenberg H, Lee R, Ballance C, Pawlyk D et al (1990) murine monoclonal-antibodies against carcinoembryonic antigen—immunological, pharmacokinetic, and targeting properties in humans. Can Res 50:2823–2831

    CAS  Google Scholar 

  62. Behr T, Sharkey R, Juweid M, Dunn R, Vagg R, Ying Z et al (1997) Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J Nucl Med 38:858–870

    CAS  PubMed  Google Scholar 

  63. Juweid M, Sharkey R, Swayne L, Behr T, Dunn R, Goldenberg D (1996) Radioimmunotherapy in patients with CEA-producing cancers and small-volume disease using I-131-labeled anti-CEA monoclonal antibody NP-4 F(ab’)(2). J Nucl Med 37:735

    Google Scholar 

  64. Goldenberg D, Wlodkowski T, Sharkey R, Silberstein E, Serafini A, Garty I et al (1993) Colorectal-cancer imaging with iodine-123-labeled CEA monoclonal-antibody fragments. J Nucl Med 34:61–70

    CAS  PubMed  Google Scholar 

  65. Hansen H, Goldenberg D, Newman E, Grebenau R, Sharkey R (1993) Characterization of 2nd-generation monoclonal-antibodies against carcinoembryonic antigen. Cancer 71:3478–3485. https://doi.org/10.1002/1097-0142(19930601)71:11%3c3478::AID-CNCR2820711104%3e3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  66. Sharkey R, Goldenberg D, Murthy S, Pinsky H, Vagg R, Pawlyk D et al (1993) Clinical-evaluation of tumour targeting with a high-affinity, anticarcinoembryonic-antigen specific, murine monoclonal-antibody, MN-14. Cancer 71:2082–2096. https://doi.org/10.1002/1097-0142(19930315)71:6%3c2082::AID-CNCR2820710625%3e3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  67. Sharkey R, Juweid M, Shevitz J, Behr T, Dunn R, Swayne L et al (1995) Evaluation of a complementarity-determining region-grafted (humanized) anticarcinoembryonic antigen monoclonal-antibody in preclinical and clinical-studies. Cancer Res 55:5935–45

    Google Scholar 

  68. Hajjar G, Sharkey RM, Burton J, Zhang C-H, Yeldell D, Matthies A, Alavi A, Losman MJ, Brenner A, Goldenberg DM (2002) Phase I radioimmunotherapy trial with iodine-131—labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin Colorectal Cancer 2:31–42

    Article  CAS  PubMed  Google Scholar 

  69. Blumenthal R, Sharkey R, Snyder D, Hansen H, Goldenberg D (1988) Reduction of radioantibody-induced myelotoxicity in hamsters by recombinant interleukin-1. Can Res 48:5403–5406

    CAS  Google Scholar 

  70. Nordlinger B, Sorbye H, Glimelius B, Poston G, Schlag P, Rougier P et al (2013) Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol 14:1208–1215. https://doi.org/10.1016/S1470-2045(13)70447-9

    Article  CAS  PubMed  Google Scholar 

  71. de Jong M, Pulitano C, Ribero D, Strub J, Mentha G, Schulick R et al (2009) Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis an international multi-institutional analysis of 1669 patients. Ann Surg 250:440–448. https://doi.org/10.1097/SLA.0b013e3181b4539b

    Article  PubMed  Google Scholar 

  72. Liersch T, Meller J, Kulle B, Behr T, Markus P, Langer C et al (2005) Phase II trial of carcinoembryonic antigen radioimmunotherapy with I-131-labletuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 23:6763–6770. https://doi.org/10.1200/JCO.2005.18.622

    Article  CAS  PubMed  Google Scholar 

  73. Liersch T, Meller J, Bittrich M, Kulle B, Becker H, Goldenberg D (2007) Update of carcinoembryonic antigen radioimmunotherapy with (131)supercript stopI-Labetuzumab after salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol 14:2577–2590. https://doi.org/10.1245/s10434-006-9328-x

    Article  PubMed  Google Scholar 

  74. Sahlmann C, Homayounfar K, Niessner M, Dyczkowski J, Conradi L, Braulke F et al (2017) Repeated adjuvant anti-CEA radioimmunotherapy after resection of colorectal liver metastases: safety, feasibility, and long-term efficacy results of a prospective phase 2 study. Cancer 123:638–649. https://doi.org/10.1002/cncr.30390

    Article  CAS  PubMed  Google Scholar 

  75. Johnson V, Schlom J, Paterson A, Bennett J, Magnani J, Colcher D (1986) Analysis of a human tumour-associated glycoprotein (TAG-72) identified by monoclonal-antibody B72.3. Cancer Res 46:850–7

    CAS  PubMed  Google Scholar 

  76. Molinolo A, Simpson J, Thor A, Schlom J (1990) Enhanced tumour binding using immunohistochemical analyses by 2nd generation anti-tumour-associated glycoprotein-72 monoclonal-antibodies versus monoclonal antibody-B72.3 in human tissue. Cancer Res 50:1291–8

    CAS  PubMed  Google Scholar 

  77. Colcher D, Hand P, Nuti M, Schlom J (1981) A spectrum of monoclonal-antibodies reactive with human mammary-tumour cellS. Proc Natl Acad Sci USA Biol Sci 78:3199–3203. https://doi.org/10.1073/pnas.78.5.3199

    Article  CAS  Google Scholar 

  78. Brown CK, Modzelewski RA, Johnson CS, Wong MKK (2000) A novel approach for the identification of unique tumour vasculature binding peptides using an E. coli peptide display library. Ann Surg Oncol 7:743–749. https://doi.org/10.1007/s10434-000-0743-0

    Article  CAS  PubMed  Google Scholar 

  79. Cohen A, Martin E, Lavery I, Daly J, Sardi A, Aitken D et al (1991) Radioimmunoguided surgery using I-125 B72.3 in patients with colorectal-cancer. Arch Surg 126:349–52

    Article  CAS  PubMed  Google Scholar 

  80. Colcher D, Milenic D, Ferroni P, Carrasquillo J, Reynolds J, Roselli M et al (1990) Invivo fate of monoclonal-antibody B723 in patients with colorectal-cancer. J Nucl Med 31:1133–42

    CAS  PubMed  Google Scholar 

  81. Colcher D, Milenic D, Roselli M, Raubitschek A, Yarranton G, King D et al (1989) Characterization and biodistribution of recombinant and recombinant chimeric constructs of monoclonal-antibody B72.3. Cancer Res 49:1738–45

    CAS  PubMed  Google Scholar 

  82. Whittle N, Adair J, Lloyd C, Jenkins L, Devine J, Schlom J et al (1987) Expression in cos cells of a mouse human chimaeric B723-antibody. Protein Eng 1:499–505. https://doi.org/10.1093/protein/1.6.499

    Article  CAS  PubMed  Google Scholar 

  83. Meredith R, Khazaeli M, Plott W, Saleh M, Liu T, Allen L et al (1992) Phase-I trial of iodine-131-chimeric B723 (human IGG4) in metastatic colorectal-cancer. J Nucl Med 33:23–9

    CAS  PubMed  Google Scholar 

  84. Morrison S (1985) Transfectomas provide novel chimeric antibodies. Science 229:1202–1207. https://doi.org/10.1126/science.3929380

    Article  CAS  PubMed  Google Scholar 

  85. Hutzell P, Kashmiri S, Colcher D, Primus F, Hand P, Roselli M et al (1991) Generation and characterization of a recombinant/chimeric B72.3 (human gamma-1). Cancer Res 51:181–9

    CAS  PubMed  Google Scholar 

  86. Muraro R, Kuroki M, Wunderlich D, Poole D, Colcher D, Thor A et al (1988) Generation and characterization of B72.3 2nd-generation monoclonal-antibodies reactive with the tumour-associated glycoprotein-72 antigen. Cancer Res 48:4588–96

    CAS  PubMed  Google Scholar 

  87. Colcher D, Minelli M, Roselli M, Muraro R, Simpsonmilenic D, Schlom J (1988) Radioimmunolocalization of human carcinoma xenografts with B723 2nd-generation monoclonal-antibodies. Cancer Res 48:4597–603

    CAS  PubMed  Google Scholar 

  88. Divgi C, Scott A, Mcdermott K, Fallone P, Hilton S, Siler K et al (1994) clinical comparison of radiolocalization of 2 monoclonal-antibodies (mAbs) against the TAG-72 antigen. Nucl Med Biol 21:9–15. https://doi.org/10.1016/0969-8051(94)90124-4

    Article  CAS  PubMed  Google Scholar 

  89. Murray J, Macey D, Kasi L, Rieger P, Cunningham J, Bhadkamkar V et al (1994) Phase-II radioimmunotherapy trial with I-131 CC49 in colorectal-cancer. Cancer 73:1057–1066. https://doi.org/10.1002/1097-0142(19940201)73:3+%3c1057::AID-CNCR2820731345%3e3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  90. Divgi C, Scott A, Dantis L, Capitelli P, Siler K, Hilton S et al (1995) Phase-I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon-carcinoma. J Nucl Med 36:586–592

    CAS  PubMed  Google Scholar 

  91. Greiner J, Hand P, Noguchi P, Fisher P, Pestka S, Schlom J (1984) Enhanced expression of surface tumour-associated antigens on human-breast and colon-tumour cells after recombinant human-leukocyte alpha-interferon treatment. Can Res 44:3208–3214

    CAS  Google Scholar 

  92. Greiner J, Guadagni F, Goldstein D, Borden E, Ritts R, Witt P et al (1991) Evidence for the elevation of serum carcinoembryonic antigen and tumour-associated glycoprotein-72 levels in patients administered interferons. Can Res 51:4155–4163

    CAS  Google Scholar 

  93. Greiner J, Ullmann C, Nieroda C, Qi C, Eggensperger D, Shimada S et al (1993) Improved radioimmunotherapeutic efficacy of an anticarcinoma monoclonal-antibody (I-131-CC49) when given in combination with gamma-interferon. Can Res 53:600–608

    CAS  Google Scholar 

  94. Blumenthal R, Sharkey R, Goldenberg D (1992) Dose escalation of radioantibody in a mouse model with the use of recombinant human interleukin-1 and granulocyte-macrophage colony-stimulating factor intervention to reduce myelosuppression. J Natl Cancer Inst 84:399–407. https://doi.org/10.1093/jnci/84.6.399

    Article  CAS  PubMed  Google Scholar 

  95. Meredith R, Bueschen A, Khazaeli M, Plott W, Grizzle W, Wheeler R et al (1994) treatment of metastatic prostate carcinoma with radiolabeled antibodY CC49. J Nucl Med 35:1017–1022

    CAS  PubMed  Google Scholar 

  96. Wheeler RH MR, Saleh MN (1994) A phase II trial of IL-1+ radioimmunotherapy (RIT) in patients (pts) with metastatic colon cancer. Proc Annu Met Am Soc Clin Oncol (meeting abstract) 295

  97. Meredith R, Khazaeli M, Plott W, Grizzle W, Liu T, Schlom J et al (1996) Phase II study of dual I-131-labeled monoclonal antibody therapy with interferon in patients with metastatic colorectal cancer. Clin Cancer Res 2:1811–1818

    CAS  PubMed  Google Scholar 

  98. SlavinChiorini D, Kashmiri S, Lee H, Milenic D, Poole D, Bernon E et al (1997) A CDR-grafted (humanized) domain-deleted antitumour antibody. Cancer Biother Radiopharm 12:305–316. https://doi.org/10.1089/cbr.1997.12.305

    Article  CAS  Google Scholar 

  99. Chinn P, Morena R, Santoro D, Kazules T, Kashmiri S, Schlom J et al (2006) Pharmacokinetics and ibmor localization of In-111-labeled HuCC49 Delta C(H)2 in BALB/c mice and athymic murine colon carcinoma xenograft. Cancer Biother Radiopharm 21:106–116. https://doi.org/10.1089/cbr.2006.21.106

    Article  CAS  PubMed  Google Scholar 

  100. Mueller B, Reisfeld R, Gillies S (1990) serum half-life and tumour-localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside-GD2. Proc Natl Acad Sci USA 87:5702–5705. https://doi.org/10.1073/pnas.87.15.5702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Slavinchiorini D, Hand P, Kashmiri S, Calvo B, Zaremba S, Schlom J (1993) Biologic properties of a CH2 domain-deleted recombinant immunoglobulin. Int J Cancer 53:97–103. https://doi.org/10.1002/ijc.2910530119

    Article  CAS  Google Scholar 

  102. Slavinchiorini D, Kashmiri S, Schlom J, Calvo B, Shu L, Schott M et al (1995) Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res 55:5957–67

    Google Scholar 

  103. Heath J, White S, Johnstone C, Catimel B, Simpson R, Moritz R et al (1997) The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc Natl Acad Sci USA 94:469–474. https://doi.org/10.1073/pnas.94.2.469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ritter G, Cohen L, Nice E, Catimel B, Burgess A, Moritz R et al (1997) Characterization of posttranslational modifications of human A33 antigen, a novel palmitoylated surface glycoprotein of human gastrointestinal epithelium. Biochem Biophys Res Commun 236:682–686. https://doi.org/10.1006/bbrc.1997.6966

    Article  CAS  PubMed  Google Scholar 

  105. Welt S, Divgi C, Real F, Yeh S, Garinchesa P, Finstad C et al (1990) quantitative-analysis of antibody localization in human metastatic colon cancer—a phase-I study of monoclonal antibody-A33. J Clin Oncol 8:1894–1906. https://doi.org/10.1200/JCO.1990.8.11.1894

    Article  CAS  PubMed  Google Scholar 

  106. Welt S, DivgI C, Kemeny N, Finn R, Scott A, Graham M et al (1994) Phase I/II study of iodine 131-LABELED monoclonal-antibody A33 in patients with advanced colon-canceR. J Clin Oncol 12:1561–1571. https://doi.org/10.1200/JCO.1994.12.8.1561

    Article  CAS  PubMed  Google Scholar 

  107. King D, Antoniw P, Owens R, Adair J, Haines A, Farnsworth A et al (1995) Preparation and preclinical evaluation of humanized A33 immunoconjugates for radioimmunotherapy. Br J Cancer 72:1364–72. https://doi.org/10.1038/bjc.1995.516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Welt S, Ritter G, Williams C, Cohen L, John M, Jungbluth A et al (2003) Phase I study of anticolon cancer humanized antibody A33. Clin Cancer Res 9:1338–1346

    CAS  PubMed  Google Scholar 

  109. Welt S, Ritter G, Williams C, Cohen L, Jungbluth A, Richards E et al (2003) Preliminary report of a phase I study of combination chemotherapy and humanized A33 antibody immunotherapy in patients with advanced colorectal cancer. Clin Cancer Res 9:1347–1353

    CAS  PubMed  Google Scholar 

  110. Scott A, Lee F, Jones R, Hopkins W, MacGregor D, Cebon J et al (2005) A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: Biodistribution, pharmacokinetics, and quantitative tumour uptake. Clin Cancer Res 11:4810–4817. https://doi.org/10.1158/1078-0432.CCR-04-2329

    Article  CAS  PubMed  Google Scholar 

  111. Chong G, Lee F, Hopkins W, Tebbutt N, Cebon J, Mountain A et al (2005) Phase I trial of I-131-huA33 in patients with advanced colorectal carcinoma. Clin Cancer Res 11:4818–4826. https://doi.org/10.1158/1078-0432.CCR-04-2330

    Article  CAS  PubMed  Google Scholar 

  112. Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Fuhrer P (1979) colorectal-carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genetics 5:957–972. https://doi.org/10.1007/BF01542654

    Article  CAS  PubMed  Google Scholar 

  113. Herlyn M, Steplewski Z, Herlyn D, Koprowski H (1979) Colorectal carcinoma-specific antigen—detection by means of monoclonal antibodies. Proc Natl Acad Sci USA 76:1438–1442. https://doi.org/10.1073/pnas.76.3.1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Trzpis M, McLaughlin P, de Leij L, Harmsen M (2007) Epithelial cell adhesion molecule—more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395. https://doi.org/10.2353/ajpath.2007.070152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gottlinger H, Funke I, Johnson J, Gokel J, Riethmuller G (1986) The epithelial-cell surface-antigen 17–1A, a target for antibody-mediated tumour-therapy—its biochemical nature, tissue distribution and recognition by different monoclonal-antibodies. Int J Cancer 38:47–53

    Article  CAS  PubMed  Google Scholar 

  116. Sun L, Curtis P, Rakowiczszulczynska E, Ghrayeb J, Chang N, Morrison S et al (1987) chimeric antibody with human constant regions and mouse variable regions directed against carcinoma-associated antigen 17–1A. Proc Natl Acad Sci USA 84:214–218. https://doi.org/10.1073/pnas.84.1.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shaw D, Khazaeli M, Sun L, Ghrayeb J, Daddona P, Mckinney S et al (1987) Characterization of a mouse human chimeric monoclonal-antibody (17–1A) to a colon cancer tumour-associated antigen. J Immunol 138:4534–4538

    CAS  PubMed  Google Scholar 

  118. Macey D, Grant E, Kasi L, Rosenblum M, Zhang H, Katz R et al (1997) Effect of recombinant alpha-interferon on pharmacokinetics, biodistribution, toxicity, and efficacy of I-131-labeled monoclonal antibody CC49 in breast cancer: A phase II trial. Clin Cancer Res 3:1547–1555

    CAS  PubMed  Google Scholar 

  119. Murray J, Macey D, Grant E, Rosenblum M, Kasi L, Zhang H et al (1995) Enhanced tag-72 expression and turner uptake of radiolabeled monoclonal-antibody CC49 In metastatic breast-cancer patients following alpha-interferon treatment. Can Res 55:S5925–S5928

    Google Scholar 

  120. Mulligan T, Carrasquillo J, Chung Y, Milenic D, Schlom J, Feuerstein I et al (1995) Phase I study of intravenous Lu-177-labeled CC49 murine monoclonal antibody in patients with advanced adenocarcinoma. Clin Cancer Res 1:1447–1454

    CAS  PubMed  Google Scholar 

  121. Marken J, Schieven G, Hellstrom I, Hellstrom K, Aruffo A (1992) Cloning and expression of the tumour-associated antigen-L6. Proc Natl Acad Sci USA 89:3503–3507. https://doi.org/10.1073/pnas.89.8.3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Goodman G, Hellstrom I, Brodzinsky L, Nicaise C, Kulander B, Hummel D et al (1990) Phase-I trial of murine monoclonal antibody-L6 in breast, colon, ovarian, and lung-cancer. J Clin Oncol 8:1083–1092. https://doi.org/10.1200/JCO.1990.8.6.1083

    Article  CAS  PubMed  Google Scholar 

  123. Svensson H, Vrudhula V, Emswiler J, Macmaster J, CosanD W, Senter P et al (1995) In-vitro and in-vivo activities of a doxorubicin prodrug in combination with monoclonal-antibody beta-lactamase conjugates. Can Res 55:2357–2365

    CAS  Google Scholar 

  124. DeNardo S, OGrady L, Richman C, Goldstein D, ODonnell R, DeNardo D et al (1997) Radioimmunotherapy for advanced breast cancer using I-131-ChL6 antibody. Anticancer Res 17:1745–51

    CAS  PubMed  Google Scholar 

  125. DeNardo S, Richman C, Goldstein D, Shen S, Salako Q, Kukis D et al (1997) Yttrium-90/indium-111-DOTA-peptide-chimeric L6: Pharmacokinetics, dosimetry and initial results in patients with incurable breast cancer. Anticancer Res 17:1735–1744

    CAS  PubMed  Google Scholar 

  126. Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong N, Ting H et al (2020) HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-020-05094-1

    Article  PubMed  PubMed Central  Google Scholar 

  127. Xavier C, Vaneycken I, Dhuyvetter M, Heemskerk J, Keyaerts M, Vincke C et al (2013) Synthesis, preclinical validation, dosimetry, and toxicity of Ga-68-NOTA-Anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med 54:776–84. https://doi.org/10.2967/jnumed.112.111021

    Article  CAS  PubMed  Google Scholar 

  128. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C et al (2016) Phase I study of Ga-68-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med 57:27–33. https://doi.org/10.2967/jnumed.115.162024

    Article  CAS  PubMed  Google Scholar 

  129. D’Huyvetter M, De Vos J, Xavier C, Pruszynski M, Sterckx Y, Massa S et al (2017) I-131-labeled Anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Res 23:6616–6628. https://doi.org/10.1158/1078-0432.CCR-17-0310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Perez E, Romond E, Suman V, Jeong J, Sledge G, Geyer C et al (2014) Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2-positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol 32:3744. https://doi.org/10.1200/JCO.2014.55.5730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kameswaran M, Gota V, Ambade R, Gupta S, Dash A (2017) Preparation and preclinical evaluation of I-131-trastuzumab for breast cancer. J Labelled Compd Radiopharm 60:12–19. https://doi.org/10.1002/jlcr.3465

    Article  CAS  Google Scholar 

  132. Goldenberg D, Deland F, Bennett S, Primus F, Nelson M, Flanigan R et al (1983) Radioimmunodetection of prostatic-cancer—invivo use of radioactive antibodies against prostatic acid-phosphatase for diagnosis and detection of prostatic-cancer by nuclear imaging. JAMA J Am Med Assoc 250:630–635. https://doi.org/10.1001/jama.250.5.630

    Article  CAS  Google Scholar 

  133. Meredith R, Khazaeli M, Macey D, Grizzle W, Mayo M, Schlom J et al (1999) Phase II study of interferon-enhanced I-131-labeled high affinity CC49 monoclonal antibody therapy in patients with metastatic prostate cancer. Clin Cancer Res 5:3254S-S3258

    CAS  PubMed  Google Scholar 

  134. Bouchelouche K, Turkbey B, Choyke P (2016) PSMA PET and radionuclide therapy in prostate cancer. Semin Nucl Med 46:522–535. https://doi.org/10.1053/j.semnuclmed.2016.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  135. Haberkorn U, Eder M, Kopka K, Babich J, Eisenhut M (2016) New strategies in prostate cancer: prostate-specific membrane antigen (PSMA) ligands for diagnosis and therapy. Clin Cancer Res 22:9–15. https://doi.org/10.1158/1078-0432.CCR-15-0820

    Article  CAS  PubMed  Google Scholar 

  136. Tagawa S, Beltran H, Vallabhajosula S, Goldsmith S, Osborne J, Matulich D et al (2010) Anti-prostate-specific membrane antigen-based radioimmunotherapy for prostate cancer. Cancer 116:1075–1083. https://doi.org/10.1002/cncr.24795

    Article  CAS  PubMed  Google Scholar 

  137. Sadaghiani M, Sheikhbahaei S, Werner R, Pienta K, Pomper M, Solnes L et al (2021) A systematic review and meta-analysis of the effectiveness and toxicities of lutetium-177-labeled prostate-specific membrane antigen-targeted radioligand therapy in metastatic castration-resistant prostate cancer. Eur Urol 80:82–94. https://doi.org/10.1016/j.eururo.2021.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Morris M, De Bono J, Chi K, Fizazi K, Herrmann K (2021) Phase III study of lutetium-177-PSMA-617 in patients with metastatic castration-resistant prostate cancer (VISION). J Clin Oncol

  139. Novartis. Novartis receives FDA breakthrough therapy designation for investigational 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer (mCRPC). https://www.novartis.com/news/novartis-receives-fda-breakthrough-therapy-designation-investigational-177lu-psma-617-patients-metastatic-castration-resistant-prostate-cancer-mcrpc. Accessed 27 Nov 2021

  140. Wilkowski R, Wolf M, Heinemann V (2008) Primary advanced unresectable pancreatic cancer. Recent Results Cancer Res 177:79–93

    Article  CAS  PubMed  Google Scholar 

  141. Qu C, Li Y, Song Y, Rizvi S, Raja C, Zhang D et al (2004) MUC1 expression in primary and metastatic pancreatic cancer cells for in vitro treatment by Bi-213-C595 radioimmunoconjugate. Br J Cancer 91:2086–2093. https://doi.org/10.1038/sj.bjc.6602232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Winter J, Tang L, Klimstra D, Brennan M, Brody J, Rocha F et al (2012) A novel survival-based tissue microarray of pancreatic cancer validates MUC1 and mesothelin as biomarkers. PLoS ONE. https://doi.org/10.1371/journal.pone.0040157

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gold D, Alisauskas R, Sharkey R (1995) Targeting of xenografted pancreatic-cancer with a new monoclonal-antibodY, PAM4. Can Res 55:1105–1110

    CAS  Google Scholar 

  144. Mariani G, Molea N, Bacciardi D, Boggi U, Fornaciari G, Campani D et al (1995) Initial turner targeting, biodistribution, and pharmacokinetic evaluation of the monoclonal-antibody PAM4 in patients with pancreatic-cancer. Cancer Res 55:S5911–S5

    Google Scholar 

  145. Gold D, Cardillo T, Vardi Y, Blumenthal R (1997) Radioimmunotherapy of experimental pancreatic cancer with I-131-labeled monoclonal antibody PAM4. Int J Cancer 71:660–667

    Article  CAS  PubMed  Google Scholar 

  146. Cardillo T, Ying Z, Gold D (2001) Therapeutic advantage of (90)Yttrium-versus (131)Iodine-labeled PAM4 antibody in experimental pancreatic cancer. Clin Cancer Res 7:3186–3192

    CAS  PubMed  Google Scholar 

  147. El-Serag H, Rudolph L (2007) Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 132:2557–2576. https://doi.org/10.1053/j.gastro.2007.04.061

    Article  CAS  PubMed  Google Scholar 

  148. Nordenstedt H, White D, El-Serag H (2010) The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42:S206–S214. https://doi.org/10.1016/S1590-8658(10)60507-5

    Article  PubMed  PubMed Central  Google Scholar 

  149. Finn R (2010) Development of molecularly targeted therapies in hepatocellular carcinoma: where do we go now? (vol 16, pg 390, 2010). Clin Cancer Res 16:2696. https://doi.org/10.1158/1078-0432.CCR-10-0681

    Article  Google Scholar 

  150. Order S, Stillwagon G, Klein J, Leichner P, Siegelman S, Fishman E et al (1985) I-131 antiferritin, a new treatment modality in hepatoma—a radiation-therapy-oncology-group study. J Clin Oncol 3:1573–1582. https://doi.org/10.1200/JCO.1985.3.12.1573

    Article  CAS  PubMed  Google Scholar 

  151. Liu Y, Yang K, Wu Y, Gang Y, Zhu D (1983) Treatment of advanced primary hepatocellular-carcinoma by I-131-labeled-anti-AFP. Lancet 1:531–532

    Article  CAS  PubMed  Google Scholar 

  152. Sitzmann J, Abrams R (1993) Improved survival for hepatocellular cancer with combination surgery and multimodality treatment. Ann Surg 217:149–154. https://doi.org/10.1097/00000658-199302000-00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen S, Li B, Xie H, Xu L, Niu G, Fan K et al (2004) Phase I clinical trial of targeted therapy using I-131-hepama-1 mAb in patients with hepatocellular carcinoma. Cancer Biother Radiopharm 19:589–600

    Article  CAS  PubMed  Google Scholar 

  154. Zhang Q, Zhou J, Ku X, Chen X, Zhang L, Xu J et al (2007) Expression of CD147 as a significantly unfavorable prognostic factor in hepatocellular carcinoma. Eur J Cancer Prev 16:196–202. https://doi.org/10.1097/01.cej.0000236245.40619.c3

    Article  PubMed  Google Scholar 

  155. Chen Z, Mi L, Xu J, Song F, Zhang Q, Zhang Z et al (2006) Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (I-131) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys 65:435–444. https://doi.org/10.1016/j.ijrobp.2005.12.034

    Article  CAS  PubMed  Google Scholar 

  156. Zhang Z, Bian H, Feng Q, Mi L, Mo T, Kuang A et al (2006) Biodistribution and localization of Iodine-131-labeled metuximab in patients with hepatocellular carcinoma. Cancer Biol Ther 5:318–322. https://doi.org/10.4161/cbt.5.3.2431

    Article  CAS  PubMed  Google Scholar 

  157. Wu L, Yang Y, Ge N, Shen S, Liang J, Wang Y et al (2012) Hepatic artery injection of I-131-labelled metuximab combined with chemoembolization for intermediate hepatocellular carcinoma: a prospective nonrandomized study. Eur J Nucl Med Mol Imaging 39:1306–1315. https://doi.org/10.1007/s00259-012-2145-5

    Article  CAS  PubMed  Google Scholar 

  158. He Q, Lu W, Liu Y, Guan Y, Kuang A (2013) I-131-labeled metuximab combined with chemoembolization for unresectable hepatocellular carcinoma. World J Gastroenterol 19:9104–9110. https://doi.org/10.3748/wjg.v19.i47.9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xu J, Shen Z, Chen X, Zhang Q, Bian H, Zhu P et al (2007) A randomized controlled trial of licartin for preventing hepatoma recurrence after liver transplantation. Hepatology 45:269–276. https://doi.org/10.1002/hep.21465

    Article  CAS  PubMed  Google Scholar 

  160. Bian H, Zheng J, Nan G, Li R, Chen C, Hu C et al (2014) Randomized trial of [I-131] metuximab in treatment of hepatocellular carcinoma after percutaneous radiofrequency ablation. JNCI J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju239

    Article  PubMed  Google Scholar 

  161. Li J, Xing J, Yang Y, Liu J, Wang W, Xia Y et al (2020) Adjuvant I-131-metuximab for hepatocellular carcinoma after liver resection: a randomised, controlled, multicentre, open-label, phase 2 trial. Lancet Gastroenterol Hepatol 5:548–560. https://doi.org/10.1016/S2468-1253(19)30422-4

    Article  PubMed  Google Scholar 

  162. Huang J, Zhang X, Tang Q, Zhang F, Li Y, Feng Z et al (2011) Prognostic significance and potential therapeutic target of VEGFR2 in hepatocellular carcinoma. J Clin Pathol 64:343–348. https://doi.org/10.1136/jcp.2010.085142

    Article  CAS  PubMed  Google Scholar 

  163. Huang J, Liang J, Tang Q, Wang Z, Chen L, Zhu J et al (2011) An active murine-human chimeric Fab antibody derived from Escherichia coli, potential therapy against over-expressing VEGFR2 solid tumours. Appl Microbiol Biotechnol 91:1341–1351. https://doi.org/10.1007/s00253-011-3335-y

    Article  CAS  PubMed  Google Scholar 

  164. Huang J, Tang Q, Wang C, Yu H, Feng Z, Zhu J (2015) Molecularly targeted therapy of human hepatocellular carcinoma xenografts with radio-iodinated anti-VEGFR2 murine-human chimeric fab. Sci Rep. https://doi.org/10.1038/srep10660

    Article  PubMed  PubMed Central  Google Scholar 

  165. Goodenberger M, Jenkins R (2012) Genetics of adult glioma. Cancer Genet 205:613–621. https://doi.org/10.1016/j.cancergen.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  166. Taylor O, Brzozowski J, Skelding K (2019) Glioblastoma multiforme: an overview of emerging therapeutic targets. Front Oncol. https://doi.org/10.3389/fonc.2019.00963

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zimm S, Wampler G, Stablein D, Hazra T, Young H (1981) Intra-cerebral metastases in solid-tumour patients—natural-history and results of treatment. Cancer 48:384–394. https://doi.org/10.1002/1097-0142(19810715)48:2%3c384::AID-CNCR2820480227%3e3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  168. Schouten L, Rutten J, Huveneers H, Twijnstra A (2002) Incidence of brain Metastases in a cohort of patients with breast, colon, kidney, and lung cancer, and melanoma. Neurology 58:A49

    Google Scholar 

  169. Lombardi G, Di Stefano A, Farina P, Zagonel V, Tabouret E (2014) Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: an overview of the literature. Cancer Treat Rev 40:951–959. https://doi.org/10.1016/j.ctrv.2014.05.007

    Article  PubMed  Google Scholar 

  170. Lu-Emerson C, Eichler AF (2012) Brain metastases. Continuum Lifelong Learn Neurol 18:295–311

    Article  Google Scholar 

  171. Marquez A, Wu R, Zhao J, Tao J, Shi Z (2004) Evaluation of epidermal growth factor receptor (EGFR) by chromogenic in situ hybridization (CISH (TM)) and immunohistochemistry (IHC) in archival gliomas using bright-field microscopy. Diagn Mol Pathol 13:1–8. https://doi.org/10.1097/00019606-200403000-00001

    Article  CAS  PubMed  Google Scholar 

  172. Murthy U, Basu A, Rodeck U, Herlyn M, Ross A, Das M (1987) Binding of an antagonistic monoclonal-antibody to an intact and fragmented egf-receptor polypeptide. Arch Biochem Biophys 252:549–560. https://doi.org/10.1016/0003-9861(87)90062-2

    Article  CAS  PubMed  Google Scholar 

  173. Brady LW, Markoe AM, Woo DV et al (1990) Iodine125 labeled anti-epidermal growth factor receptor-425 in the treatment of malignant astrocytomas: a pilot study. J Neurosurg Sci 34:243–9

    CAS  PubMed  Google Scholar 

  174. Brady L, Miyamoto C, Woo D, Rackover M, Emrich J, Bender H et al (1992) Malignant astrocytomas treated with I-125 labeled monoclonal-antibody 425 against epidermal growth-factor receptor—a phase II trial. Int J Radiat Oncol Biol Phys 22:225–230. https://doi.org/10.1016/0360-3016(92)91009-C

    Article  CAS  PubMed  Google Scholar 

  175. Emrich J, Brady L, Quang T, Class R, Miyamoto C, Black P et al (2002) Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients—ten-year synopsis of a novel treatment. Am J Clin Oncol Cancer Clin Trials 25:541–546. https://doi.org/10.1097/00000421-200212000-00001

    Article  Google Scholar 

  176. Li L, Quang T, Gracely E, Kim J, Emrich J, Yaeger T et al (2010) A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme Clinical article. J Neurosurg 113:192–198. https://doi.org/10.3171/2010.2.JNS091211

    Article  PubMed  Google Scholar 

  177. An Z, Aksoy O, Zheng T, Fan Q, Weiss W (2018) Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 37:1561–1575. https://doi.org/10.1038/s41388-017-0045-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jungbluth A, Stockert E, Huang H, Collins V, Coplan K, Iversen K et al (2003) A monoclonal antibody recognizing human cancers with amplification/overexpression of the human epidermal growth factor receptor. Proc Natl Acad Sci USA 100:639–644. https://doi.org/10.1073/pnas.232686499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Perera R, Zoncu R, Johns T, Pypaert M, Lee F, Mellman I et al (2007) Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia 9:1099–1110. https://doi.org/10.1593/neo.07721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Hens M, Vaidyanathan G, Welsh P, Zalutsky M (2009) Labeling internalizing anti-epidermal growth factor receptor variant III monoclonal antibody with Lu-177: in vitro comparison of acyclic and macrocyclic ligands. Nucl Med Biol 36:117–128. https://doi.org/10.1016/j.nucmedbio.2008.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hens M, Vaidyanathan G, Zhao X, Bigner D, Zalutsky M (2010) Anti-EGFRvIII monoclonal antibody armed with Lu-177: in vivo comparison of macrocyclic and acyclic ligands. Nucl Med Biol 37:741–750. https://doi.org/10.1016/j.nucmedbio.2010.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zalutsky M, Moseley R, Coakham H, Coleman R, Bigner D (1989) Pharmacokinetics and tumour-localization of I-131-Labeled anti-tenascin monoclonal antibody-81C6 In patients with gliomas and other intracranial malignancies. Can Res 49:2807–2813

    CAS  Google Scholar 

  183. Ventimiglia J, Wikstrand C, Ostrowski L, Bourdon M, Lightner V, Bigner D (1992) Tenascin expression in human glioma cell-lines and normal-tissues. J Neuroimmunol 36:41–55. https://doi.org/10.1016/0165-5728(92)90029-K

    Article  CAS  PubMed  Google Scholar 

  184. Bourdon M, Wikstrand C, Furthmayr H, Matthews T, Bigner D (1983) Human glioma-mesenchymal extracellular-matrix antigen defined by monoclonal-antibody. Can Res 43:2796–2805

    CAS  Google Scholar 

  185. Siri A, Carnemolla B, Saginati M, Leprini A, Casari G, Baralle F et al (1991) Human tenascin—primary structure, pre-messenger-rna splicing patterns and localization of the epitopes recognized by 2 monoclonal-antibodies. Nucleic Acids Res 19:525–531. https://doi.org/10.1093/nar/19.3.525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Reardon D, Quinn J, Akabani G, Coleman R, Friedman A, Friedman H et al (2006) Novel human IgG2b/murine chimeric antitenascin monoclonal antibody construct radiolabeled with I-131 and administered into the surgically created resection cavity of patients with malignant glioma: phase I trial results. J Nucl Med 47:912–918

    CAS  PubMed  Google Scholar 

  187. Riva P, Arista A, Sturiale C, Moscatelli G, Tison V, Mariani M et al (1992) Treatment of intracranial human glioblastoma by direct intratumoural administration of I-131-Labeled anti-tenascin monoclonal-antibody BC-2. Int J Cancer 51:7–13. https://doi.org/10.1002/ijc.2910510103

    Article  CAS  PubMed  Google Scholar 

  188. Riva P, Arista A, Sturiale C, Tlson V, Lazzari S et al (1994) Glioblastoma therapy by direct intralesional administration of i-131 radioiodine labeled antitenascin antibodies. Cell Biophys 24/25

  189. Riva P, Arista A, Franceschi G, Frattarelli M, SturialE C, Riva N et al (1995) Local treatment of malignant gliomas by direct infusion of specific monoclonal-antibodies labeled with I-131—comparison of the results obtained in recurrent and newly-diagnosed tumours. Cancer Res 55:5952–6

    Google Scholar 

  190. Riva P, Franceschi G, Frattarelli M, Riva N, Guiducci G, Cremonini A et al (1999) I-131 radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma—Phase I and II study. Acta Oncol 38:351–359

    Article  CAS  PubMed  Google Scholar 

  191. Bourdon M, Matthews T, Pizzo S, Bigner D (1985) Immunochemical and biochemical-characterization of a glioma-associated extracellular-matrix glycoprotein. J Cell Biochem 28:183–195. https://doi.org/10.1002/jcb.240280302

    Article  CAS  PubMed  Google Scholar 

  192. Bourdon M, Coleman R, Blasberg R, Groothuis D, Bigner D (1984) Monoclonal-antibody localization in subcutaneous and intracranial human glioma xenografts - paired-label and imaging analysis. Anticancer Res 4:133–140

    CAS  PubMed  Google Scholar 

  193. Lee Y, Bullard D, Wikstrand C, Zalutsky M, Muhlbaier L, Bigner D (1987) Comparison of monoclonal-antibody delivery to intracranial glioma xenografts by intravenous and intracarotid administration. Can Res 47:1941–1946

    CAS  Google Scholar 

  194. Lee Y, Bullard D, Zalutsky M, Coleman R, Wikstrand C, Friedman H et al (1988) Therapeutic efficacy of antiglioma mesenchymal extracellular-matrix I-131-radiolabeled murine monoclonal-antibody in a human glioma xenograft model. Can Res 48:559–566

    CAS  Google Scholar 

  195. Schold S, Zalutsky M, Coleman R, Glantz M, Friedman A, Jaszczak R et al (1993) distribution and dosimetry of I-123 labeled monoclonal antibody-81C6 in patients with anaplastic glioma. Invest Radiol 28:488–496

    Article  PubMed  Google Scholar 

  196. Zalutsky M, Moseley R, Benjamin J, Colapinto E, Fuller G, Coakham H et al (1990) Monoclonal-antibody and F(ab’)2 fragment delivery to tumour in patients with glioma—comparison of intracarotid and intravenous administration. Can Res 50:4105–4110

    CAS  Google Scholar 

  197. Akabani G, Cokgor I, Coleman R, Trotter D, Wong T, Friedman H et al (2000) Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 46:947–958. https://doi.org/10.1016/S0360-3016(99)00500-3

    Article  CAS  PubMed  Google Scholar 

  198. Cokgor I, Akabani G, Kuan C, Friedman H, Friedman A, Coleman R et al (2000) Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 18:3862–3872. https://doi.org/10.1200/JCO.2000.18.22.3862

    Article  CAS  PubMed  Google Scholar 

  199. Bigner D, Brown M, Friedman A, Coleman R, Akabani G, Friedman H et al (1998) Iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with recurrent malignant gliomas: phase I trial results. J Clin Oncol 16:2202–2212. https://doi.org/10.1200/JCO.1998.16.6.2202

    Article  CAS  PubMed  Google Scholar 

  200. Reardon D, Akabani G, Coleman R, Friedman A, Friedman H, Herndon J et al (2002) Phase II trial of murine I-131-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol 20:1389–1397. https://doi.org/10.1200/JCO.20.5.1389

    Article  CAS  PubMed  Google Scholar 

  201. He X, Archer G, Wikstrand C, Morrison S, Zalutsky M, Bigner D et al (1994) Generation and characterization of a mouse/human chimeric antibody-directed against extracellular-matrix protein tenascin. J Neuroimmunol 52:127–137. https://doi.org/10.1016/0165-5728(94)90106-6

    Article  CAS  PubMed  Google Scholar 

  202. Brack S, Silacci M, Birchler M, Neri D (2006) Tumour-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12:3200–3208. https://doi.org/10.1158/1078-0432.CCR-05-2804

    Article  CAS  PubMed  Google Scholar 

  203. Weledji EP, Assob JC (2014) The ubiquitous neural cell adhesion molecule (N-CAM). Ann Med Surg 3:77–81

    Article  Google Scholar 

  204. Papanastassiou V, Pizer B, Coakham H, Bullimore J, Zananiri T, Kemshead J (1993) Treatment of recurrent and cystic malignant gliomas by a single intracavity injection of I-131 monoclonal-antibody—feasibility, pharmacokinetics and dosimetry. Br J Cancer 67:144–151. https://doi.org/10.1038/bjc.1993.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Goldman A, Vivian G, Gordon I, Pritchard J, Kemshead J (1984) Immunolocalization of neuroblastoma using radiolabeled monoclonal antibody UJ13A. J Pediatr 105:252–256

    Article  CAS  PubMed  Google Scholar 

  206. Jones D, Lashford L, Dicks-Mireaux C, Kemshead J (1987) Comparison of pharmacokinetics of radiolabeled monoclonal antibody UJ13A in patients and animal models NCI monographs. J Natl Cancer Inst 125–30

  207. Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5:436–446. https://doi.org/10.1038/nrc1627

    Article  CAS  PubMed  Google Scholar 

  208. Rybak J, Trachsel E, Scheuermann J, Neri D (2007) Ligand-based vascular targeting of disease. ChemMedChem 2:22–40. https://doi.org/10.1002/cmdc.200600181

    Article  CAS  PubMed  Google Scholar 

  209. Carnemolla B, Balza E, Siri A, Zardi L, Nicotra M, Bigotti A et al (1989) A tumour-associated fibronectin isoform generated by alternative splicing of messenger-rna precursors. J Cell Biol 108:1139–1148. https://doi.org/10.1083/jcb.108.3.1139

    Article  CAS  PubMed  Google Scholar 

  210. Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G et al (1994) The fibronectin isoform containing the ED-B oncofetal domain—a marker of angiogenesis. Int J Cancer 59:612–618. https://doi.org/10.1002/ijc.2910590507

    Article  CAS  PubMed  Google Scholar 

  211. Ebbinghaus C, Scheuermann J, Neri D, Elia G (2004) Diagnostic and therapeutic applications of recombinant antibodies: targeting the extra-domain B of fibronectin, a marker of tumour angiogenesis. Curr Pharm Des 10:1537–1549. https://doi.org/10.2174/1381612043384808

    Article  CAS  PubMed  Google Scholar 

  212. Pini A, Viti F, Santucci A, Carnemolla B, Zardi L, Neri P et al (1998) Design and use of a phage display library—human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776. https://doi.org/10.1074/jbc.273.34.21769

    Article  CAS  PubMed  Google Scholar 

  213. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A et al (2002) Selective targeting of tumoural vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85. https://doi.org/10.1002/ijc.10662

    Article  CAS  PubMed  Google Scholar 

  214. Berndorff D, Borkowski S, Sieger S, Rother A, Friebe M, Viti F et al (2005) Radioimmunotherapy of solid tumours by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11:7053S-S7063. https://doi.org/10.1158/1078-0432.CCR-1004-0015

    Article  CAS  PubMed  Google Scholar 

  215. Tijink B, Neri D, Leemans C, Budde M, Dinkelborg L, Stigter-van Walsum M et al (2006) Radioimmunotherapy of head and neck cancer xenografts using I-131-labeled antibody L19-SIP for selective targeting of tumour vasculature. J Nucl Med 47:1127–1135

    CAS  PubMed  Google Scholar 

  216. El-Emir E, Dearling J, Huhalov A, Robson M, Boxer G, Neri D et al (2007) Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models. Br J Cancer 96:1862–1870. https://doi.org/10.1038/sj.bjc.6603806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Virotta G, Poli G, Bettini A, Bianchi C, Giovannoni L, Gerali A, et al. Radioimmunotherapy with 131I-L19SIP (Radretumab) in metastatic solid tumours: preliminary results. J Nucl Med. 2012;53

  218. Dobrenkov K, Cheung N (2014) GD2-targeted immunotherapy and radioimmunotherapy. Semin Oncol 41:589–612. https://doi.org/10.1053/j.seminoncol.2014.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Cheung N, Landmeier B, Neely J, Nelson A, Abramowsky C, Ellery S et al (1986) Complete tumour ablation with radiolabeled-I-131 disialoganglioside GD2-specific monoclonal-antibody against human neuroblastoma xenografted in nude-mice. J Natl Cancer Inst 77:739–745. https://doi.org/10.1093/jnci/77.3.739

    Article  CAS  PubMed  Google Scholar 

  220. Mennel H, Bosslet K, Geissel H, Bauer B (2000) Immunohistochemically visualized localisation of gangliosides G(lac)2 (GD(3)) and G(tri)2 (GD(2)) in cells of human intracranial tumours. Exp Toxicol Pathol 52:277–285

    Article  CAS  PubMed  Google Scholar 

  221. Yeh S, Larson S, Burch L, Kushner B, Laquaglia M, Finn R et al (1991) Radioimmunodetection of neuroblastoma with iodine-131-3F8—correlation with biopsy, Iodine-131-metaiodobenzylguanidine and standard diagnostic modalities. J Nucl Med 32:769–76

    CAS  PubMed  Google Scholar 

  222. Larson S, Pentlow K, Volkow N, Wolf A, Finn R, Lambrecht R et al (1992) PET scanning of Iodine-124-3F8 as an approach to tumour dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 33:2020–2023

    CAS  PubMed  Google Scholar 

  223. Yu A, Gilman A, Ozkaynak M, London W, Kreissman S, Chen H et al (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363:1324–1334. https://doi.org/10.1056/NEJMoa0911123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Cheung N, Cheung I, Kushner B, Ostrovnaya I, Chamberlain E, Kramer K et al (2012) Murine anti-GD2 monoclonal antibody 3f8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol 30:3264–3270. https://doi.org/10.1200/JCO.2011.41.3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kramer K, Kushner B, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P et al (2010) Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol 97:409–418. https://doi.org/10.1007/s11060-009-0038-7

    Article  PubMed  Google Scholar 

  226. Kramer K, Pandit-Taskar N, Humm J, Zanzonico P, Haque S, Dunkel I et al (2018) A phase II study of radioimmunotherapy with intraventricular I-131-3F8 for medulloblastoma. Pediatr Blood Cancer. https://doi.org/10.1002/pbc.26754

    Article  PubMed  Google Scholar 

  227. Kramer K, Humm J, Souweidane M, Zanzonico P, Dunkel I, Gerald W et al (2007) Phase I study of targeted Radioimmunotherapy for leptomeningeal cancers using intra-ommaya 131-I-3F8. J Clin Oncol 25:5465–5470. https://doi.org/10.1200/JCO.2007.11.1807

    Article  PubMed  Google Scholar 

  228. Epstein A, Chen F, Taylor C (1988) A novel method for the detection of necrotic lesions in human cancers. Can Res 48:5842–5848

    CAS  Google Scholar 

  229. Epstein A, Chen D, Ansari A, Najafi A, Siegel M, Lee K et al (1991) Radioimmunodetection of necrotic lesions in human tumours using I-131-labeled TNT-1 F(ab)2 monoclonal-antibody. Antibody Immunoconjug Radiopharmaceut 4:151–161

    Google Scholar 

  230. Chen F, Taylor C, Epstein A (1989) Tumour necrosis treatment of me-180 human cervical-carcinoma model with i-131-labeled TNT-1 monoclonal-antibody. Can Res 49:4578–4585

    CAS  Google Scholar 

  231. Peregrine Pharmaceuticals Inc. Cotara® oncology. www.peregrineinc.com/pipeline/cotara-oncology.html. Accessed 7 Jan 2021

  232. Hdeib A, Sloan A (2012) Targeted radioimmunotherapy: the role of I-131-chTNT-1/B mAb (Cotara (R)) for treatment of high-grade gliomas. Future Oncol 8:659–669. https://doi.org/10.2217/FON.12.58

    Article  CAS  PubMed  Google Scholar 

  233. Patel S, Shapiro W, Laske D, Jensen R, Asher A, Wessels B et al (2005) Safety and feasibility of convection-enhanced delivery of cotara for the treatment of malignant glioma: Initial experience in 51 patients. Neurosurgery 56:1243–1252. https://doi.org/10.1227/01.NEU.0000159649.71890.30

    Article  PubMed  Google Scholar 

  234. Shapiro W, Carpenter S, Roberts K, Shan J (2006) I-131-chTNT-1/B mAb: tumour necrosis therapy for malignant astrocytic glioma. Expert Opin Biol Ther 6:539–545. https://doi.org/10.1517/14712598.6.5.539

    Article  CAS  PubMed  Google Scholar 

  235. Street H, Goris M, Fisher G, Wessels B, Cho C, Hernandez C et al (2006) Phase I study of I-131-chimeric(ch) TNT-1/B monoclonal antibody for the treatment of advanced colon cancer. Cancer Biother Radiopharm 21:243–256. https://doi.org/10.1089/cbr.2006.21.243

    Article  CAS  PubMed  Google Scholar 

  236. Chen S, Yu L, Jiang C, Zhao Y, Sun D, Li S et al (2005) Pivotal study of iodine-131-labeled chimeric tumour necrosis treatment radioimmunotherapy in patients with advanced lung cancer. J Clin Oncol 23:1538–1547. https://doi.org/10.1200/JCO.2005.06.108

    Article  PubMed  Google Scholar 

  237. Yu L, Ju D, Chen W, Li T, Xu Z, Jiang C et al (2006) I-131-chTNT radioimmunotherapy of 43 patients with advanced lung cancer. Cancer Biother Radiopharm 21:5–14. https://doi.org/10.1089/cbr.2006.21.5

    Article  PubMed  Google Scholar 

  238. Anderson P, Wiseman G, Lewis B, Charboneau J, Dunn W, Carpenter S et al (2003) A phase I safety and imaging study using radiofrequency ablation (RFA) followed by 131IchTNT-1/B radioimmunotherapy adjuvant treatment of hepatic metastases. Cancer Ther 1:297–306

    Google Scholar 

  239. Shapiro W, Gupta D, Mahapatra A, Gopal S, Judy K, Patel S et al (2011) Open-label, dose confirmation study of interstitial I-131-chTNT-1/b mab for the treatment of glioblastoma multiforme (GBM) at first relapse: interim results. J Clin Oncol. https://doi.org/10.1200/jco.2011.29.15_suppl.2035

    Article  PubMed  PubMed Central  Google Scholar 

  240. Peregrine P (2011) Dose confirmation study of cotara for the treatment of glioblastoma multiforme at first relapse. ClinicalTrials.gov NCT00677716. Accessed 7 Jan 2021

  241. Cheson B (2003) Radioimmunotherapy of non-Hodgkin lymphomas. Blood 101:391–398. https://doi.org/10.1182/blood-2002-06-1793

    Article  CAS  PubMed  Google Scholar 

  242. Green D, Press O (2017) Whither radioimmunotherapy: to be or not to be? Can Res 77:2191–2196. https://doi.org/10.1158/0008-5472.CAN-16-2523

    Article  CAS  Google Scholar 

  243. Stashenko P, Nadler L, Hardy R, Schlossman S (1980) Characterization of a human lymphocyte-B-specific antigen. J Immunol 125:1678–1685

    CAS  PubMed  Google Scholar 

  244. Einfeld D, Brown J, Valentine M, Clark E, Ledbetter J (1988) Molecular-cloning of the human B-cell CD20 receptor predicts a hydrophobic protein with multiple transmembrane domains. EMBO J 7:711–717. https://doi.org/10.1002/j.1460-2075.1988.tb02867.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Press O, Farr A, Borroz K, Anderson S, Martin P (1989) Endocytosis and degradation of monoclonal-antibodies targeting human B-cell malignancies. Can Res 49:4906–4912

    CAS  Google Scholar 

  246. Press O, Howellclark J, Anderson S, Bernstein I (1994) Retention of B-CELL-specific monoclonal-antibodies by human lymphoma-cells. Blood 83:1390–1397

    Article  CAS  PubMed  Google Scholar 

  247. Rao AV, Akabani G, Rizzieri DA (2005) Radioimmunotherapy for non-Hodgkin’s lymphoma. Clin Med Res 3:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tomblyn M (2012) Radioimmunotherapy for B-cell non-Hodgkin lymphomas. Cancer Control 19:196–203. https://doi.org/10.1177/107327481201900304

    Article  PubMed  Google Scholar 

  249. Bodet-Milin C, Ferrer L, Pallardy A, Eugène T, Rauscher A, Faivre-Chauvet A et al (2013) RIT of B-cell non-Hodgkin’s lymphoma. Front Oncol. https://doi.org/10.3389/fonc.2013.00177

    Article  PubMed  PubMed Central  Google Scholar 

  250. Buchsbaum D, Wahl R, Normolle D, Kaminski M (1992) Therapy with unlabeled and I-131-labeled Pan-B-cell monoclonal-antibodies in nude-mice bearing Raji Burkitt’s-lymphoma xenografts. Can Res 52:6476–6481

    CAS  Google Scholar 

  251. Kaminski M, Zasadny K, Francis I, Fenner M, Ross C, Milik A et al (1996) Iodine-131—Anti-B1 radioimmunotherapy for B-cell lymphoma. J Clin Oncol 14:1974–1981. https://doi.org/10.1200/JCO.1996.14.7.1974

    Article  CAS  PubMed  Google Scholar 

  252. Wahl R, Zasadny K, MacFarlane D, Francis I, Ross C, Estes J et al (1998) Iodine-131 anti-B1 antibody for B-cell lymphoma: an update on the Michigan phase I experience. J Nucl Med 39:21S-S27

    CAS  PubMed  Google Scholar 

  253. Kaminski M, Zasadny K, Francis I, Milik A, Ross C, Moon S et al (1993) Radioimmunotherapy of B-CELL lymphoma with [I-131] anti-B1 (ANTI-CD20) antibody. N Engl J Med 329:459–465. https://doi.org/10.1056/NEJM199308123290703

    Article  CAS  PubMed  Google Scholar 

  254. Kaminski M, Estes J, Zasadny K, Francis I, Ross C, Tuck M et al (2000) Radioimmunotherapy with iodine I-131 tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96:1259–1266. https://doi.org/10.1182/blood.V96.4.1259.h8001259_1259_1266

    Article  CAS  PubMed  Google Scholar 

  255. Vose J, Wahl R, Saleh M, Rohatiner A, Knox S, Radford J et al (2000) Multicenter phase II study of iodine-131 tositumomab for chemotherapy-relapsed/refractory low-grade and transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 18:1316–1323. https://doi.org/10.1200/JCO.2000.18.6.1316

    Article  CAS  PubMed  Google Scholar 

  256. Kaminski M, Zelenetz A, Press O, Saleh M, Leonard J, Fehrenbacher L et al (2001) Pivotal study of iodine I 131 Tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol 19:3918–3928. https://doi.org/10.1200/JCO.2001.19.19.3918

    Article  CAS  PubMed  Google Scholar 

  257. Horning S, Younes A, Jain V, Kroll S, Lucas J, Podoloff D et al (2005) Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-Cell lymphoma, progressive after rituximab. J Clin Oncol 23:712–719. https://doi.org/10.1200/JCO.2005.07.040

    Article  CAS  PubMed  Google Scholar 

  258. Kaminski M, Tuck M, Estes J, Kolstad A, Ross C, Zasadny K et al (2005) I-131-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352:441–449. https://doi.org/10.1056/NEJMoa041511

    Article  CAS  PubMed  Google Scholar 

  259. Kaminski M, Tuck M, Estes J, Kolstad A, Ross C, Regan D et al (2009) Tositumomab and iodine I-131 tositumomab for previously untreated, advanced-stage, follicular lymphoma: median 10 year follow-up results. Blood 114:1447. https://doi.org/10.1182/blood.V114.22.3759.3759

    Article  Google Scholar 

  260. Leonard J, Coleman M, Kostakoglu L, Chadburn A, Cesarman E, Furman R et al (2005) Abbreviated chemotherapy with fludarabine followed by tositumomab and iodine I 131 tositumomab for untreated follicular lymphoma. J Clin Oncol 23:5696–5704. https://doi.org/10.1200/JCO.2005.14.803

    Article  CAS  PubMed  Google Scholar 

  261. Link B, Martin P, Kaminski M, Goldsmith S, Coleman M, Leonard J (2010) Cyclophosphamide, vincristine, and prednisone followed by tositumomab and iodine-131-tositumomab in patients with untreated low-grade follicular lymphoma: eight-year follow-up of a multicenter phase II study. J Clin Oncol 28:3035–3041. https://doi.org/10.1200/JCO.2009.27.8325

    Article  CAS  PubMed  Google Scholar 

  262. Press O, Unger J, Rimsza L, Friedberg J, LeBlanc M, Czuczman M et al (2013) Phase III randomized intergroup trial of CHOP Plus rituximab compared with CHOP chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-Hodgkin lymphoma: SWOG S0016. J Clin Oncol 31:314–320. https://doi.org/10.1200/JCO.2012.42.4101

    Article  CAS  PubMed  Google Scholar 

  263. Sacchi S, Marcheselli L, Bari A, Marcheselli R, Pozzi S, Luminari S et al (2008) Secondary malignancies after treatment for indolent non-Hodgkin’s lymphoma: a 16-year follow-up study. Haematologica 93:398–404. https://doi.org/10.3324/haematol.12120

    Article  PubMed  Google Scholar 

  264. Press O, Unger J, Rimsza L, Friedberg J, LeBlanc M, Czuczman M et al (2011) A phase III randomized intergroup trial (SWOG S0016) of CHOP chemotherapy plus rituximab Vs CHOP chemotherapy plus iodine-131-tositumomab for the treatment of newly diagnosed follicular non-Hodgkin’s lymphoma. Blood 118:48. https://doi.org/10.1182/blood.V118.21.98.98

    Article  Google Scholar 

  265. Press O, Unger J, Braziel R, Maloney D, Miller T, LeBlanc M et al (2003) A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I 131 tositumomab for previously untreated follicular non-Hodgkin lymphoma: Southwest Oncology Group Protocol S9911. Blood 102:1606–1612. https://doi.org/10.1182/blood-2003-01-0287

    Article  CAS  PubMed  Google Scholar 

  266. Press O, Unger J, Braziel R, Maloney D, Miller T, LeBlanc M et al (2006) Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin’s lymphoma: five-year follow-up of southwest oncology group protocol S9911. J Clin Oncol 24:4143–4149. https://doi.org/10.1200/JCO.2006.05.8198

    Article  CAS  PubMed  Google Scholar 

  267. Leahy M, Turner J (2011) Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with I-131-rituximab in routine clinical practice: 10-year single-institution experience of 142 consecutive patients. Blood 117:45–52. https://doi.org/10.1182/blood-2010-02-269753

    Article  CAS  PubMed  Google Scholar 

  268. McQuillan A, Macdonald W, Leahy M, Turner J (2011) First-line radio-immunotherapy of newly diagnosed, advanced follicular non-Hodgkin lymphoma with I-131-rituximab: the INITIAL study. Blood 118:1589

    Article  Google Scholar 

  269. McQuillan AD, Macdonald WBG, Turner H (2014) Phase II study first-line Iodine-131-rituximab radioimmunotherapy follicular non-Hodgkin lymphoma and prognostic Fluorine-18 FDG-PET. Leukemia Lymphoma. https://doi.org/10.3109/10428194.2014.949260

    Article  PubMed  Google Scholar 

  270. Silberstein E (2012) Radioiodine: the classic theranostic agent. Semin Nucl Med 42:164–170. https://doi.org/10.1053/j.semnuclmed.2011.12.002

    Article  PubMed  Google Scholar 

  271. D’Huyvetter M, De Vos J, Caveliers V, Vaneycken I, Heemskerk J, Duhoux F et al (2020) Phase I trial of 131I-GMIB-Anti-HER2-VHH1, a new promising candidate for HER2-targeted radionuclide therapy in breast cancer patients. J Nucl Med. https://doi.org/10.2967/jnumed.120.255679

    Article  PubMed  Google Scholar 

  272. Precirix. A study to evaluate safety, tolerability, dosimetry, and preliminary efficacy of the HER2 directed radioligand CAM-H2 in patients with advanced/metastatic HER2-positive breast, gastric, and gastro-esophageal junction (GEJ) Cancer ClinicalTrials.gov Identifier: NCT04467515; 2020

Download references

Funding

This study was partially supported by Fundação para a Ciência e Tecnologia (UID/Multi/04349/2020 and PTDC/QUINUC/30147/2017.)

Author information

Authors and Affiliations

Authors

Contributions

Both authors, M-CNO and JDGC, have contributed equally to the conceptualization, writing, review and editing of this manuscript.

Corresponding authors

Correspondence to Maria Cristina Oliveira or João D. G. Correia.

Ethics declarations

Conflict of interest

Author Maria-Cristina N Oliveira declares that she has no conflict of interest. Author João D. G. Correia declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, M.C., Correia, J.D.G. Clinical application of radioiodinated antibodies: where are we?. Clin Transl Imaging 10, 123–162 (2022). https://doi.org/10.1007/s40336-021-00477-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00477-2

Keywords

Navigation