Skip to main content

Radiolabeled Antibodies for Cancer Radioimmunotherapy

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

Radioimmunotherapy (RIT) uses monoclonal antibodies (mAb) that are labeled with a particle-emitting radioisotope to deliver damaging radiation to specific antigens on cancer cells. Since its initial development for the treatment of lymphomas, RIT strategies are now being tested in other hematological malignancies and solid tumors. RIT in solid tumors remains a difficult endeavor due to physiological differences imncluding the presence of a dynamic tumor microenvironment. Nevertheless, the interest in RIT is buoyed by the recent clinical success of mAb as cancer therapeutics, the identification of novel cancer-associated proteins, and the development of novel isotope production and radiolabeling methods. The development of new radioimmunoconjugates requires the selection of a suitable target, mAb, and radiolabeling strategies. Many targets have already been validated for RIT, and multiple strategies to improve its therapeutic index have been proposed such as combination treatments, pre-targeting strategies, or imaging with radiolabeled mAb to pre-screen patients that are potential responders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7. https://doi.org/10.1038/256495a0.

    Article  PubMed  Google Scholar 

  2. Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14.

    PubMed  PubMed Central  Google Scholar 

  3. Dobrenkov K, Cheung N-KV. 30 – Therapeutic antibodies and immunologic conjugates. In: Niederhuber JE, Armitage JO, Kastan MB, Doroshow JH, Tepper JE, editors. Abeloff’s clinical oncology. 6th ed. Philadelphia: Sanders; 2020. p. 486–99. e8.

    Chapter  Google Scholar 

  4. Goldenberg DM, DeLand F, Kim E, Bennett S, Primus FJ, van Nagell JR Jr, et al. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med. 1978;298(25):1384–6. https://doi.org/10.1056/NEJM197806222982503.

    Article  CAS  PubMed  Google Scholar 

  5. Mach JP, Buchegger F, Forni M, Ritschard J, Berche C, Lumbroso JD, et al. Use of radiolabelled monoclonal anti-CEA antibodies for the detection of human carcinomas by external photoscanning and tomoscintigraphy. Immunol Today. 1981;2(12):239–49. https://doi.org/10.1016/0167-5699(81)90011-6.

    Article  CAS  PubMed  Google Scholar 

  6. Barbet J, Bardies M, Bourgeois M, Chatal JF, Cherel M, Davodeau F, et al. Radiolabeled antibodies for cancer imaging and therapy. Methods Mol Biol. 2012;907:681–97. https://doi.org/10.1007/978-1-61779-974-7_38.

    Article  CAS  PubMed  Google Scholar 

  7. Shimoni A, Zwas ST. Radioimmunotherapy and autologous stem-cell transplantation in the treatment of B-cell non-Hodgkin lymphoma. Semin Nucl Med. 2016;46(2):119–25. https://doi.org/10.1053/j.semnuclmed.2015.10.009.

    Article  PubMed  Google Scholar 

  8. Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother. 1997;44(3):179–88.

    Article  CAS  PubMed  Google Scholar 

  9. DeNardo GL, DeNardo SJ, O'Donnell RT, Kroger LA, Kukis DL, Meares CF, et al. Are radiometal-labeled antibodies better than iodine-131-labeled antibodies: comparative pharmacokinetics and dosimetry of copper-67-, iodine-131-, and yttrium-90-labeled Lym-1 antibody in patients with non-Hodgkin’s lymphoma. Clin Lymphoma. 2000;1(2):118–26.

    Article  CAS  PubMed  Google Scholar 

  10. Schroff RW, Foon KA, Beatty SM, Oldham RK, Morgan AC Jr. Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res. 1985;45(2):879–85.

    CAS  PubMed  Google Scholar 

  11. van der Linden EF, van Kroonenburgh MJ, Pauwels EK. Side-effects of monoclonal antibody infusions for the diagnosis and treatment of cancer. Int J Biol Markers. 1988;3(3):147–53.

    Article  PubMed  Google Scholar 

  12. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57(17):3629–34.

    CAS  PubMed  Google Scholar 

  13. Sodee DB, Malguria N, Faulhaber P, Resnick MI, Albert J, Bakale G. Multicenter ProstaScint imaging findings in 2154 patients with prostate cancer. ProstaScint Imaging Centers Urol. 2000;56(6):988–93.

    CAS  PubMed  Google Scholar 

  14. Han M, Partin AW. Current clinical applications of the in-capromab Pendetide scan (ProstaScint(R) scan, Cyt-356). Rev Urol. 2001;3(4):165–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Vivier D, Sharma SK, Zeglis BM. Understanding the in vivo fate of radioimmunoconjugates for nuclear imaging. J Labelled Comp Radiopharm. 2018;61(9):672–92. https://doi.org/10.1002/jlcr.3628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carrasquillo JA, Mulshine JL, Bunn PA Jr, Reynolds JC, Foon KA, Schroff RW, et al. Indium-111 T101 monoclonal antibody is superior to iodine-131 T101 in imaging of cutaneous T-cell lymphoma. J Nucl Med. 1987;28(3):281–7.

    CAS  PubMed  Google Scholar 

  17. Rizzieri D. Zevalin((R)) (ibritumomab tiuxetan): after more than a decade of treatment experience, what have we learned? Crit Rev Oncol Hematol. 2016;105:5–17. https://doi.org/10.1016/j.critrevonc.2016.07.008.

    Article  PubMed  Google Scholar 

  18. Teillaud JL. Engineering of monoclonal antibodies and antibody-based fusion proteins: successes and challenges. Expert Opin Biol Ther. 2005;5(Suppl 1):S15–27. https://doi.org/10.1517/14712598.5.1.S15.

    Article  CAS  PubMed  Google Scholar 

  19. Wei W, Rosenkrans ZT, Liu J, Huang G, Luo Q-Y, Cai W. ImmunoPET: concept, design, and applications. Chem Rev. 2020;120(8):3787–851. https://doi.org/10.1021/acs.chemrev.9b00738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McKnight BN, Viola-Villegas NT. (89)Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm. 2018;61(9):727–38. https://doi.org/10.1002/jlcr.3605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beck A, Dumontet C, Joubert N. Antibody-drug conjugates in oncology. Recent success of an ancient concept. Med Sci (Paris). 2019;35(12):1034–42. https://doi.org/10.1051/medsci/2019227.

    Article  Google Scholar 

  22. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87. https://doi.org/10.1038/nrc3236.

    Article  CAS  PubMed  Google Scholar 

  23. Bailly C, Bodet-Milin C, Guérard F, Rousseau C, Chérel M, Kraeber-Bodéré F, et al. Prospects for enhancing efficacy of Radioimmunotherapy. In: Hosono M, Chatal J-F, editors. Resistance to Ibritumomab in lymphoma. Cham: Springer International Publishing; 2018. p. 139–53.

    Chapter  Google Scholar 

  24. Ricart AD. Immunoconjugates against solid tumors: mind the gap. Clin Pharmacol Ther. 2011;89(4):513–23. https://doi.org/10.1038/clpt.2011.8.

    Article  CAS  PubMed  Google Scholar 

  25. Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted intracellular delivery of antibodies: the state of the art. Front Pharmacol. 2018;9:1208. https://doi.org/10.3389/fphar.2018.01208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Poty S, Mandleywala K, O'Neill E, Knight JC, Cornelissen B, Lewis JS. (89)Zr-PET imaging of DNA double-strand breaks for the early monitoring of response following alpha- and beta-particle radioimmunotherapy in a mouse model of pancreatic ductal adenocarcinoma. Theranostics. 2020;10(13):5802–14. https://doi.org/10.7150/thno.44772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carmon KS, Azhdarinia A. Application of immuno-PET in antibody-drug conjugate development. Mol Imaging. 2018;17:1536012118801223. https://doi.org/10.1177/1536012118801223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu AM. Engineered antibodies for molecular imaging of cancer. Methods. 2014;65(1):139–47. https://doi.org/10.1016/j.ymeth.2013.09.015.

    Article  CAS  PubMed  Google Scholar 

  29. Aerts HJ, Dubois L, Perk L, Vermaelen P, van Dongen GA, Wouters BG, et al. Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med. 2009;50(1):123–31. https://doi.org/10.2967/jnumed.108.054312.

    Article  CAS  PubMed  Google Scholar 

  30. Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S. Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods. 2017;130:23–35. https://doi.org/10.1016/j.ymeth.2017.07.018.

    Article  CAS  PubMed  Google Scholar 

  31. Moek KL, Giesen D, Kok IC, de Groot DJA, Jalving M, Fehrmann RSN, et al. Theranostics using antibodies and antibody-related therapeutics. J Nucl Med. 2017;58(Suppl 2):83S–90S. https://doi.org/10.2967/jnumed.116.186940.

    Article  CAS  PubMed  Google Scholar 

  32. Chiavenna SM, Jaworski JP, Vendrell A. State of the art in anti-cancer mAbs. J Biomed Sci. 2017;24(1):15. https://doi.org/10.1186/s12929-016-0311-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576–88. https://doi.org/10.1002/psp4.12224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm. 2017;43(4):519–30. https://doi.org/10.1080/03639045.2017.1278768.

    Article  CAS  PubMed  Google Scholar 

  35. Boyiadzis M, Foon KA. Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther. 2008;8(8):1151–8. https://doi.org/10.1517/14712598.8.8.1151.

    Article  CAS  PubMed  Google Scholar 

  36. Nimmagadda S, Shelake S, Pomper MG. Preclinical experimentation in oncology. In: Lewis JS, Windhorst AD, Zeglis BM, editors. Radiopharmaceutical chemistry. Cham: Springer International Publishing; 2019. p. 569–82.

    Chapter  Google Scholar 

  37. Dimastromatteo J, Kelly KA. Target identification, lead discovery, and optimization. In: Lewis JS, Windhorst AD, Zeglis BM, editors. Radiopharmaceutical chemistry. Cham: Springer International Publishing; 2019. p. 555–67.

    Chapter  Google Scholar 

  38. Beraud E, Collignon A, Franceschi C, Olive D, Lombardo D, Mas E. Investigation of a new tumor-associated glycosylated antigen as target for dendritic cell vaccination in pancreatic cancer. Onco Targets Ther. 2012;1(1):56–61. https://doi.org/10.4161/onci.1.1.18459.

    Article  Google Scholar 

  39. Vankemmelbeke M, Chua JX, Durrant LG. Cancer cell associated glycans as targets for immunotherapy. Onco Targets Ther. 2016;5(1):e1061177. https://doi.org/10.1080/2162402X.2015.1061177.

    Article  CAS  Google Scholar 

  40. Lu Z, Kamat K, Johnson BP, Yin CC, Scholler N, Abbott KL. Generation of a fully human scFv that binds tumor-specific Glycoforms. Sci Rep. 2019;9(1):5101. https://doi.org/10.1038/s41598-019-41567-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A. 2002;99(16):10231–3. https://doi.org/10.1073/pnas.172380699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hauselmann I, Borsig L. Altered tumor-cell glycosylation promotes metastasis. Front Oncol. 2014;4:28. https://doi.org/10.3389/fonc.2014.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schietinger A, Philip M, Schreiber H. Specificity in cancer immunotherapy. Semin Immunol. 2008;20(5):276–85. https://doi.org/10.1016/j.smim.2008.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody structure and function: the basis for engineering therapeutics. Antibodies (Basel). 2019;8(4). https://doi.org/10.3390/antib8040055.

  45. Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. https://doi.org/10.3389/fimmu.2014.00520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, et al. Antibody structure and engineering considerations for the design and function of antibody drug conjugates (ADCs). Onco Targets Ther. 2018;7(3):e1395127. https://doi.org/10.1080/2162402X.2017.1395127.

    Article  Google Scholar 

  47. Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol. 2015;67(2, Part A):171–82. https://doi.org/10.1016/j.molimm.2015.03.255.

    Article  CAS  PubMed  Google Scholar 

  48. Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise. Crit Rev Oncol Hematol. 2005;54(1):11–29. https://doi.org/10.1016/j.critrevonc.2004.10.011.

    Article  CAS  PubMed  Google Scholar 

  49. Weiner LM. Fully human therapeutic monoclonal antibodies. J Immunother. 2006;29(1):1–9. https://doi.org/10.1097/01.cji.0000192105.24583.83.

    Article  CAS  PubMed  Google Scholar 

  50. Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2(3):256–65. https://doi.org/10.4161/mabs.2.3.11641.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gómez Román VR, Murray JC, Weiner LM. Chapter 1 - antibody-dependent cellular cytotoxicity (ADCC). In: Ackerman ME, Nimmerjahn F, editors. Antibody Fc. Boston: Academic Press; 2014. p. 1–27.

    Google Scholar 

  52. Weiskopf K, Weissman IL. Macrophages are critical effectors of antibody therapies for cancer. MAbs. 2015;7(2):303–10. https://doi.org/10.1080/19420862.2015.1011450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23(9):1147–57. https://doi.org/10.1038/nbt1137.

    Article  CAS  PubMed  Google Scholar 

  54. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. https://doi.org/10.2165/11531280-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  55. Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and fc-fusion proteins. J Pharm Sci. 2015;104(6):1866–84. https://doi.org/10.1002/jps.24444.

    Article  CAS  PubMed  Google Scholar 

  56. Ovacik M, Lin K. Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 2018;11(6):540–52. https://doi.org/10.1111/cts.12567.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cataldi M, Vigliotti C, Mosca T, Cammarota M, Capone D. Emerging role of the spleen in the pharmacokinetics of monoclonal antibodies, nanoparticles and exosomes. Int J Mol Sci. 2017;18(6) https://doi.org/10.3390/ijms18061249.

  58. Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol. 2002;13(6):603–8.

    Article  CAS  PubMed  Google Scholar 

  59. Senter PD. Potent antibody drug conjugates for cancer therapy. Curr Opin Chem Biol. 2009;13(3):235–44. https://doi.org/10.1016/j.cbpa.2009.03.023.

    Article  CAS  PubMed  Google Scholar 

  60. Tolcher AW, Sugarman S, Gelmon KA, Cohen R, Saleh M, Isaacs C, et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol. 1999;17(2):478–84. https://doi.org/10.1200/JCO.1999.17.2.478.

    Article  CAS  PubMed  Google Scholar 

  61. Juweid M, Neumann R, Paik C, Perez-Bacete MJ, Sato J, van Osdol W, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res. 1992;52(19):5144–53.

    CAS  PubMed  Google Scholar 

  62. Weinstein JN, van Osdol W. Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the "binding site barrier". Cancer Res. 1992;52(9 Suppl):2747s–51s.

    CAS  PubMed  Google Scholar 

  63. Rudnick SI, Adams GP. Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm. 2009;24(2):155–61. https://doi.org/10.1089/cbr.2009.0627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60(12):1421–34. https://doi.org/10.1016/j.addr.2008.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29(2):57–61. https://doi.org/10.1016/j.tips.2007.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wittrup KD, Thurber GM, Schmidt MM, Rhoden JJ. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol. 2012;503:255–68. https://doi.org/10.1016/B978-0-12-396962-0.00010-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharkey RM, Press OW, Goldenberg DM. A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood. 2009;113(17):3891–5. https://doi.org/10.1182/blood-2008-11-188896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mattes MJ, Sharkey RM, Karacay H, Czuczman MS, Goldenberg DM. Therapy of advanced B-lymphoma xenografts with a combination of 90Y-anti-CD22 IgG (epratuzumab) and unlabeled anti-CD20 IgG (veltuzumab). Clin Cancer Res. 2008;14(19):6154–60. https://doi.org/10.1158/1078-0432.CCR-08-0404.

    Article  CAS  PubMed  Google Scholar 

  69. Sharma SK, Chow A, Monette S, Vivier D, Pourat J, Edwards KJ, et al. Fc-mediated anomalous biodistribution of therapeutic antibodies in Immunodeficient mouse models. Cancer Res. 2018;78(7):1820–32. https://doi.org/10.1158/0008-5472.CAN-17-1958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bhattacharyya S, Dixit M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 2011;40(23):6112–28. https://doi.org/10.1039/c1dt10379b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wolf W, Shani J. Criteria for the selection of the most desirable radionuclide for radiolabeling monoclonal antibodies. Int J Radiation Appl Instrum Part B, Nucl Med Biol. 1986;13(4):319–24.

    Article  CAS  Google Scholar 

  72. Boros E, Holland JP. Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J Labelled Comp Radiopharm. 2018;61(9):652–71. https://doi.org/10.1002/jlcr.3590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Mathieu C, Guerard F, Frampas E, et al. Tumor immunotargeting using innovative radionuclides. Int J Mol Sci. 2015;16(2):3932–54. https://doi.org/10.3390/ijms16023932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pouget JP, Navarro-Teulon I, Bardies M, Chouin N, Cartron G, Pelegrin A, et al. Clinical radioimmunotherapy—the role of radiobiology. Nat Rev Clin Oncol. 2011;8(12):720–34. https://doi.org/10.1038/nrclinonc.2011.160.

    Article  CAS  PubMed  Google Scholar 

  75. Mikolajczak R, van der Meulen NP, Lapi SE. Radiometals for imaging and theranostics, current production and future perspectives. J Labelled Comp Radiopharm. 2019; https://doi.org/10.1002/jlcr.3770.

  76. Wilbur DS. The radiopharmaceutical chemistry of alpha-emitting radionuclides. In: Lewis JS, Windhorst AD, Zeglis BM, editors. Radiopharmaceutical chemistry. Cham: Springer International Publishing; 2019. p. 409–24.

    Chapter  Google Scholar 

  77. Tolmachev V, Orlova A, Andersson K. Methods for radiolabelling of monoclonal antibodies. Methods Mol Biol. 2014;1060:309–30. https://doi.org/10.1007/978-1-62703-586-6_16.

    Article  CAS  PubMed  Google Scholar 

  78. Martins CD, Kramer-Marek G, Oyen WJG. Radioimmunotherapy for delivery of cytotoxic radioisotopes: current status and challenges. Expert Opin Drug Deliv. 2018;15(2):185–96. https://doi.org/10.1080/17425247.2018.1378180.

    Article  CAS  PubMed  Google Scholar 

  79. Wester DW, Steele RT, Rinehart DE, DesChane JR, Carson KJ, Rapko BM, et al. Large-scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutic medical radioisotope. Appl Radiation Isotopes. 2003;59(1):35–41.

    Article  CAS  Google Scholar 

  80. Chakravarty R, Chakraborty S, Sarma HD, Nair KV, Rajeswari A, Dash A. (90) Y/(177) Lu-labelled Cetuximab immunoconjugates: radiochemistry optimization to clinical dose formulation. J Labelled Comp Radiopharm. 2016;59(9):354–63. https://doi.org/10.1002/jlcr.3413.

    Article  CAS  PubMed  Google Scholar 

  81. Papi S, Martano L, Garaboldi L, Rossi A, Cremonesi M, Grana CM, et al. Radiolabeling optimization and reduced staff radiation exposure for high-dose 90Y-ibritumomab tiuxetan (HD-Zevalin). Nucl Med Biol. 2010;37(1):85–93. https://doi.org/10.1016/j.nucmedbio.2009.08.012.

    Article  CAS  PubMed  Google Scholar 

  82. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–66. https://doi.org/10.1053/j.semnuclmed.2008.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kuo WI, Cheng KH, Chang YJ, Wu TT, Hsu WC, Chen LC, et al. Radiolabeling, characteristics and NanoSPECT/CT Imaging of 188Re-cetuximab in NCI-H292 human lung cancer xenografts. Anticancer Res. 2019;39, 183(1):–190. https://doi.org/10.21873/anticanres.13096.

  84. Vallabhajosula S, Nikolopoulou A, Jhanwar YS, Kaur G, Tagawa ST, Nanus DM, et al. Radioimmunotherapy of metastatic prostate cancer with (1)(7)(7)Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  85. Yong KJ, Milenic DE, Baidoo KE, Brechbiel MW. Mechanisms of cell killing response from Low Linear Energy Transfer (LET) radiation originating from (177)Lu radioimmunotherapy targeting disseminated intraperitoneal tumor xenografts. Int J Mol Sci. 2016;17(5) https://doi.org/10.3390/ijms17050736.

  86. Muller C, Bunka M, Haller S, Koster U, Groehn V, Bernhardt P, et al. Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med. 2014;55(10):1658–64. https://doi.org/10.2967/jnumed.114.141614.

    Article  CAS  PubMed  Google Scholar 

  87. Novak-Hofer I, Schubiger PA. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging. 2002;29(6):821–30. https://doi.org/10.1007/s00259-001-0724-y.

    Article  CAS  PubMed  Google Scholar 

  88. Dash A, Pillai MR, Knapp FF Jr. Production of (177)Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imaging. 2015;49(2):85–107. https://doi.org/10.1007/s13139-014-0315-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guleria M, Das T, Kumar C, Amirdhanayagam J, Sarma HD, Banerjee S. Preparation of clinical-scale (177) Lu-rituximab: optimization of protocols for conjugation, radiolabeling, and freeze-dried kit formulation. J Labelled Comp Radiopharm. 2017;60(5):234–41. https://doi.org/10.1002/jlcr.3493.

    Article  CAS  PubMed  Google Scholar 

  90. Frost SH, Frayo SL, Miller BW, Orozco JJ, Booth GC, Hylarides MD, et al. Comparative efficacy of 177Lu and 90Y for anti-CD20 pretargeted radioimmunotherapy in murine lymphoma xenograft models. PLoS One. 2015;10(3):e0120561. https://doi.org/10.1371/journal.pone.0120561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Orozco JJ, Balkin ER, Gooley TA, Kenoyer A, Hamlin DK, Wilbur DS, et al. Anti-CD45 radioimmunotherapy with 90Y but not 177Lu is effective treatment in a syngeneic murine leukemia model. PLoS One. 2014;9(12):e113601. https://doi.org/10.1371/journal.pone.0113601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):13s–7s.

    PubMed  Google Scholar 

  93. Guerard F, Barbet J, Chatal JF, Kraeber-Bodere F, Cherel M, Haddad F. Which radionuclide, carrier molecule and clinical indication for alpha-immunotherapy? Q J Nucl Med Mol Imaging. 2015;59(2):161–7.

    CAS  PubMed  Google Scholar 

  94. Wild D, Frischknecht M, Zhang H, Morgenstern A, Bruchertseifer F, Boisclair J, et al. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN). Cancer Res. 2011;71(3):1009–18. https://doi.org/10.1158/0008-5472.CAN-10-1186.

    Article  CAS  PubMed  Google Scholar 

  95. Heskamp S, Hernandez R, Molkenboer-Kuenen JDM, Essler M, Bruchertseifer F, Morgenstern A, et al. Alpha- versus beta-emitting radionuclides for pretargeted radioimmunotherapy of carcinoembryonic antigen-expressing human colon cancer xenografts. J Nucl Med. 2017;58(6):926–33. https://doi.org/10.2967/jnumed.116.187021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Marcu L, Bezak E, Allen BJ. Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit Rev Oncol Hematol. 2018;123:7–20. https://doi.org/10.1016/j.critrevonc.2018.01.001.

    Article  PubMed  Google Scholar 

  97. McDevitt MR, Barendswaard E, Ma D, Lai L, Curcio MJ, Sgouros G, et al. An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res. 2000;60(21):6095–100.

    CAS  PubMed  Google Scholar 

  98. McDevitt MR, Sgouros G, Sofou S. Targeted and nontargeted alpha-particle therapies. Annu Rev Biomed Eng. 2018;20:73–93. https://doi.org/10.1146/annurev-bioeng-062117-120931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiu H, Santos EB, Storb RF, Hamlin DK, Wilbur DS, Sandmaier BM. Addition of astatine-211-labeled anti-CD45 antibody to Total Body Irradiation (TBI) As conditioning for DLA-identical marrow transplantation: a novel strategy to overcome graft rejection in a canine presensitization model. Blood. 2016;128(22):2152.

    Article  Google Scholar 

  100. Green DJ, Shadman M, Jones JC, Frayo SL, Kenoyer AL, Hylarides MD, et al. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model. Blood. 2015;125(13):2111–9. https://doi.org/10.1182/blood-2014-11-612770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zalutsky MR, Pruszynski M. Astatine-211: production and availability. Curr Radiopharm. 2011;4(3):177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Griswold JR, Medvedev DG, Engle JW, Copping R, Fitzsimmons JM, Radchenko V, et al. Large scale accelerator production of (225)Ac: effective cross sections for 78-192MeV protons incident on (232)Th targets. Appl Radiat Isot. 2016;118:366–74. https://doi.org/10.1016/j.apradiso.2016.09.026.

    Article  CAS  PubMed  Google Scholar 

  103. Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of (225)ac radiopharmaceuticals: TRIUMF perspectives and experiences. Curr Radiopharm. 2018;11(3):156–72. https://doi.org/10.2174/1874471011666180416161908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jurcic JG. Clinical studies with Bismuth-213 and Actinium-225 for hematologic malignancies. Curr Radiopharm. 2018;11(3):192–9. https://doi.org/10.2174/1874471011666180525102814.

    Article  CAS  PubMed  Google Scholar 

  105. Jurcic JG, Rosenblat TL. Targeted alpha-particle immunotherapy for acute myeloid leukemia. Am Soc Clin Oncol Educ Book. 2014:e126–31. https://doi.org/10.14694/EdBook_AM.2014.34.e126.

  106. Jurcic JG. Radioimmunotherapy for hematopoietic cell transplantation. Immunotherapy. 2013;5(4):383–94. https://doi.org/10.2217/imt.13.11.

    Article  CAS  PubMed  Google Scholar 

  107. Hnatowich DJ. Recent developments in the radiolabeling of antibodies with iodine, indium, and technetium. Semin Nucl Med. 1990;20(1):80–91.

    Article  CAS  PubMed  Google Scholar 

  108. Halpern SE. The advantages and limits of indium-111 labeling of antibodies. Experimental studies and clinical applications. Int J Rad Appl Instrum B. 1986;13(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  109. Speth PAJ, Kinsella TJ, Chang AE, Klecker RW Jr, Belanger K, Collins JM. Selective incorporation of iododeoxyuridine into DNA of hepatic metastases versus normal human liver. Clin Pharmacol Ther. 1988;44(4):369–75. https://doi.org/10.1038/clpt.1988.166.

    Article  CAS  PubMed  Google Scholar 

  110. Cornelissen BA, Vallis K. Targeting the nucleus: an overview of auger-electron radionuclide therapy. Curr Drug Discov Technol. 2010;7(4):263–79. https://doi.org/10.2174/157016310793360657.

    Article  CAS  PubMed  Google Scholar 

  111. Emrich JG, Brady LW, Quang TS, Class R, Miyamoto C, Black P, et al. Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients: ten-year synopsis of a novel treatment. Am J Clin Oncol. 2002;25(6):541–6.

    Article  PubMed  Google Scholar 

  112. Kim JH, Li L, Quang TS, Emrich JG, Yaeger TE, Jenrette JM, et al. Phase II trial of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of anaplastic astrocytoma. J Radiat Oncol. 2013;2(1):7–13. https://doi.org/10.1007/s13566-012-0071-6.

    Article  CAS  Google Scholar 

  113. Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM. (111)in-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med. 2007;48(8):1357–68. https://doi.org/10.2967/jnumed.106.037937.

    Article  CAS  PubMed  Google Scholar 

  114. Pouget JP, Santoro L, Raymond L, Chouin N, Bardiès M, Bascoul-Mollevi C, et al. Cell membrane is a more sensitive target than cytoplasm to dense ionization produced by auger electrons. Radiat Res. 2008;170(2):192–200. https://doi.org/10.1667/rr1359.1.

    Article  CAS  PubMed  Google Scholar 

  115. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43(1):260–90. https://doi.org/10.1039/c3cs60304k.

    Article  CAS  PubMed  Google Scholar 

  116. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89.

    Article  CAS  PubMed  Google Scholar 

  117. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–60. https://doi.org/10.1038/nrc3925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Adumeau P, Sharma SK, Brent C, Zeglis BM. Site-specifically labeled immunoconjugates for molecular imaging--part 1: cysteine residues and Glycans. Mol Imaging Biol. 2016;18(1):1–17. https://doi.org/10.1007/s11307-015-0919-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107. https://doi.org/10.1021/ar700108g.

    Article  CAS  PubMed  Google Scholar 

  120. McCombs JR, Owen SC. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. AAPS J. 2015;17(2):339–51. https://doi.org/10.1208/s12248-014-9710-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Morais M, Ma MT. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. Drug Discov Today Technol. 2018;30:91–104. https://doi.org/10.1016/j.ddtec.2018.10.002.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kukis DL, DeNardo GL, DeNardo SJ, Mirick GR, Miers LA, Greiner DP, et al. Effect of the extent of chelate substitution on the immunoreactivity and biodistribution of 2IT-BAT-Lym-1 immunoconjugates. Cancer Res. 1995;55(4):878–84.

    CAS  PubMed  Google Scholar 

  123. Sharma SK, Glaser JM, Edwards KJ, Khozeimeh Sarbisheh E, Salih AK, Lewis JS, et al. A systematic evaluation of antibody modification and (89)Zr-radiolabeling for optimized Immuno-PET. Bioconjug Chem. 2020; https://doi.org/10.1021/acs.bioconjchem.0c00087.

  124. Vosjan MJ, Perk LR, Visser GW, Budde M, Jurek P, Kiefer GE, et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc. 2010;5(4):739–43. https://doi.org/10.1038/nprot.2010.13.

    Article  CAS  PubMed  Google Scholar 

  125. Christie RJ, Tiberghien AC, Du Q, Bezabeh B, Fleming R, Shannon A, et al. Pyrrolobenzodiazepine antibody-drug conjugates designed for stable thiol conjugation. Antibodies (Basel). 2017;6(4) https://doi.org/10.3390/antib6040020.

  126. Sussman D, Westendorf L, Meyer DW, Leiske CI, Anderson M, Okeley NM, et al. Engineered cysteine antibodies: an improved antibody-drug conjugate platform with a novel mechanism of drug-linker stability. Protein Eng Des Sel. 2018;31(2):47–54. https://doi.org/10.1093/protein/gzx067.

    Article  CAS  PubMed  Google Scholar 

  127. Adumeau P, Davydova M, Zeglis BM. Thiol-reactive bifunctional chelators for the creation of site-selectively modified radioimmunoconjugates with improved stability. Bioconjug Chem. 2018;29(4):1364–72. https://doi.org/10.1021/acs.bioconjchem.8b00081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Maguire RT, Pascucci VL, Maroli AN, Gulfo JV. Immunoscintigraphy in patients with colorectal, ovarian, and prostate cancer. Results with site-specific immunoconjugates. Cancer. 1993;72(11 Suppl):3453–62.

    Article  CAS  PubMed  Google Scholar 

  129. Zeglis BM, Davis CB, Aggeler R, Kang HC, Chen A, Agnew BJ, et al. Enzyme-mediated methodology for the site-specific radiolabeling of antibodies based on catalyst-free click chemistry. Bioconjug Chem. 2013;24(6):1057–67. https://doi.org/10.1021/bc400122c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Anami Y, Tsuchikama K. Transglutaminase-mediated conjugations. Methods Mol Biol. 2020;2078:71–82. https://doi.org/10.1007/978-1-4939-9929-3_5.

    Article  CAS  PubMed  Google Scholar 

  131. Jeger S, Zimmermann K, Blanc A, Grunberg J, Honer M, Hunziker P, et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem. 2010;49(51):9995–7. https://doi.org/10.1002/anie.201004243.

    Article  CAS  Google Scholar 

  132. Wu Y, Zhu H, Zhang B, Liu F, Chen J, Wang Y, et al. Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug Chem. 2016;27(10):2460–8. https://doi.org/10.1021/acs.bioconjchem.6b00412.

    Article  CAS  PubMed  Google Scholar 

  133. Adumeau P, Sharma SK, Brent C, Zeglis BM. Site-specifically labeled immunoconjugates for molecular imaging—part 2: peptide tags and unnatural amino acids. Mol Imaging Biol. 2016;18(2):153–65. https://doi.org/10.1007/s11307-015-0920-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Fay R, Holland JP. The impact of emerging bioconjugation chemistries on radiopharmaceuticals. J Nucl Med. 2019;60(5):587–91. https://doi.org/10.2967/jnumed.118.220806.

    Article  CAS  PubMed  Google Scholar 

  135. Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37. https://doi.org/10.1038/nrd.2016.268.

    Article  CAS  PubMed  Google Scholar 

  136. Falck G, Müller KM. Enzyme-based labeling strategies for antibody–drug conjugates and antibody mimetics. Antibodies. 2018;7(1):4.

    Article  PubMed Central  Google Scholar 

  137. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9(1):33–46. https://doi.org/10.1007/s13238-016-0323-0.

    Article  CAS  PubMed  Google Scholar 

  138. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23(21):4591–601. https://doi.org/10.1200/JCO.2005.05.160.

    Article  CAS  PubMed  Google Scholar 

  139. Kim SH. Is radioimmunotherapy a 'magic bullet'? Korean J Hematol. 2012;47(2):85–6. https://doi.org/10.5045/kjh.2012.47.2.85.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Chamarthy MR, Williams SC, Moadel RM. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets’. Yale J Biol Med. 2011;84(4):391–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Janiak MK, Wincenciak M, Cheda A, Nowosielska EM, Calabrese EJ. Cancer immunotherapy: how low-level ionizing radiation can play a key role. Cancer Immunol Immunother. 2017;66(7):819–32. https://doi.org/10.1007/s00262-017-1993-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Gorin JB, Menager J, Gouard S, Maurel C, Guilloux Y, Faivre-Chauvet A, et al. Antitumor immunity induced after alpha irradiation. Neoplasia. 2014;16(4):319–28. https://doi.org/10.1016/j.neo.2014.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gorin JB, Guilloux Y, Morgenstern A, Cherel M, Davodeau F, Gaschet J. Using alpha radiation to boost cancer immunity? Onco Targets Ther. 2014;3(9):e954925. https://doi.org/10.4161/21624011.2014.954925.

    Article  Google Scholar 

  144. Wilderman SJ, Roberson PL, Bolch WE, Dewaraja YK. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy. Phys Med Biol. 2013;58(14):4717–31. https://doi.org/10.1088/0031-9155/58/14/4717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sgouros G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J Nucl Med. 1993;34(4):689–94.

    CAS  PubMed  Google Scholar 

  146. Vallabhajosula S, Goldsmith SJ, Hamacher KA, Kostakoglu L, Konishi S, Milowski MI, et al. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. J Nucl Med. 2005;46(5):850–8.

    CAS  PubMed  Google Scholar 

  147. Dainiak N. Hematologic consequences of exposure to ionizing radiation. Exp Hematol. 2002;30(6):513–28.

    Article  CAS  PubMed  Google Scholar 

  148. Baechler S, Hobbs RF, Jacene HA, Bochud FO, Wahl RL, Sgouros G. Predicting hematologic toxicity in patients undergoing radioimmunotherapy with 90Y-ibritumomab tiuxetan or 131I-tositumomab. J Nucl Med. 2010;51(12):1878–84. https://doi.org/10.2967/jnumed.110.079947.

    Article  PubMed  Google Scholar 

  149. Sas N, Rousseau J, Nguyen F, Bellec E, Larrsson E, Becavin S, et al. A compartmental model of mouse thrombopoiesis and erythropoiesis to predict bone marrow toxicity after internal irradiation. J Nucl Med. 2014;55(8):1355–60. https://doi.org/10.2967/jnumed.113.133330.

    Article  PubMed  Google Scholar 

  150. Peyrade F, Triby C, Slama B, Fontana X, Gressin R, Broglia JM, et al. Radioimmunotherapy in relapsed follicular lymphoma previously treated by autologous bone marrow transplant: a report of eight new cases and literature review. Leuk Lymphoma. 2008;49(9):1762–8. https://doi.org/10.1080/10428190802273278.

    Article  CAS  PubMed  Google Scholar 

  151. Cheson BD. Radioimmunotherapy of non-Hodgkin’s lymphomas. Curr Drug Targets. 2006;7(10):1293–300.

    Article  CAS  PubMed  Google Scholar 

  152. Kraeber-Bodere F, Bodet-Milin C, Rousseau C, Eugene T, Pallardy A, Frampas E, et al. Radioimmunoconjugates for the treatment of cancer. Semin Oncol. 2014;41(5):613–22. https://doi.org/10.1053/j.seminoncol.2014.07.004.

    Article  CAS  PubMed  Google Scholar 

  153. Navarro-Teulon I, Lozza C, Pelegrin A, Vives E, Pouget JP. General overview of radioimmunotherapy of solid tumors. Immunotherapy. 2013;5(5):467–87. https://doi.org/10.2217/imt.13.34.

    Article  CAS  PubMed  Google Scholar 

  154. Song H, Sgouros G. Radioimmunotherapy of solid tumors: searching for the right target. Curr Drug Deliv. 2011;8(1):26–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bartholoma MD. Radioimmunotherapy of solid tumors: approaches on the verge of clinical application. J Labelled Comp Radiopharm. 2018; https://doi.org/10.1002/jlcr.3619.

  156. Bodet-Milin C, Ferrer L, Pallardy A, Eugene T, Rauscher A, Alain F-C, et al. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma. Front Oncol. 2013;3:177. https://doi.org/10.3389/fonc.2013.00177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bodet-Milin C, Kraeber-Bodere F, Eugene T, Guerard F, Gaschet J, Bailly C, et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med. 2016;46(2):135–46. https://doi.org/10.1053/j.semnuclmed.2015.10.007.

    Article  PubMed  Google Scholar 

  158. Rezaei A, Adib M, Mokarian F, Tebianian M, Nassiri R. Leukemia markers expression of peripheral blood vs bone marrow blasts using flow cytometry. Med Sci Monit. 2003;9(8):CR359–62.

    PubMed  Google Scholar 

  159. Goldenberg DM. Some like it hot: lymphoma radioimmunotherapy. Blood. 2009;113(20):4823–4. https://doi.org/10.1182/blood-2009-02-203166.

    Article  CAS  PubMed  Google Scholar 

  160. Santos MAO, Lima MM. CD20 role in pathophysiology of Hodgkin’s disease. Rev Assoc Med Bras. 2017;63(9):810–3. https://doi.org/10.1590/1806-9282.63.09.810.

    Article  PubMed  Google Scholar 

  161. Shanehbandi D, Majidi J, Kazemi T, Baradaran B, Aghebati-Maleki L. CD20-based immunotherapy of B-cell derived hematologic malignancies. Curr Cancer Drug Targets. 2017;17(5):423–44. https://doi.org/10.2174/1568009617666170109151128.

    Article  CAS  PubMed  Google Scholar 

  162. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today. 1994;15(9):450–4. https://doi.org/10.1016/0167-5699(94)90276-3.

    Article  CAS  PubMed  Google Scholar 

  163. Read ED, Eu P, Little PJ, Piva TJ. The status of radioimmunotherapy in CD20+ non-Hodgkin’s lymphoma. Target Oncol. 2015;10(1):15–26. https://doi.org/10.1007/s11523-014-0324-y.

    Article  PubMed  Google Scholar 

  164. Kawashima H. Characteristics of Ibritumomab as radionuclide therapy agent. In: Hosono M, Chatal J-F, editors. Resistance to Ibritumomab in lymphoma. Cham: Springer International Publishing; 2018. p. 79–97.

    Chapter  Google Scholar 

  165. Marcus R. Use of 90Y-ibritumomab tiuxetan in non-Hodgkin’s lymphoma. Semin Oncol. 2005;32(1 Suppl 1):S36–43. https://doi.org/10.1053/j.seminoncol.2005.01.012.

    Article  CAS  PubMed  Google Scholar 

  166. Jacobs SA, Harrison AM, Swerdlow SH, Foon KA, Avril N, Vidnovic N, et al. Radioisotopic localization of 90Yttrium–Ibritumomab Tiuxetan in patients with CD20+ non-Hodgkin’s lymphoma. Mol Imaging Biol. 2009;11(1):39–45. https://doi.org/10.1007/s11307-008-0170-3.

    Article  CAS  PubMed  Google Scholar 

  167. Weber T, Bötticher B, Mier W, Sauter M, Krämer S, Leotta K, et al. High treatment efficacy by dual targeting of Burkitt’s lymphoma xenografted mice with a 177Lu-based CD22-specific radioimmunoconjugate and rituximab. Eur J Nucl Med Mol Imaging. 2016;43(3):489–98. https://doi.org/10.1007/s00259-015-3175-6.

    Article  CAS  PubMed  Google Scholar 

  168. Conti PS, White C, Pieslor P, Molina A, Aussie J, Foster P. The role of imaging with (111)in-ibritumomab tiuxetan in the ibritumomab tiuxetan (zevalin) regimen: results from a Zevalin imaging registry. J Nucl Med. 2005;46(11):1812–8.

    CAS  PubMed  Google Scholar 

  169. MICAD Research Team. (111)In-Ibritumomab tiuxetan. Bethesda, MD: Molecular Imaging and Contrast Agent Database (MICAD); 2004.

    Google Scholar 

  170. Jacobs SA, Vidnovic N, Joyce J, McCook B, Torok F, Avril N. Full-dose 90Y ibritumomab tiuxetan therapy is safe in patients with prior myeloablative chemotherapy. Clin Cancer Res. 2005;11(19 Pt 2):7146s–50s. https://doi.org/10.1158/1078-0432.CCR-1004-0003.

    Article  CAS  PubMed  Google Scholar 

  171. Theuer CP, Leigh BR, Multani PS, Allen RS, Liang BC. Radioimmunotherapy of non-Hodgkin's lymphoma: clinical development of the Zevalin regimen. Biotechnol Annu Rev. 2004;10:265–95. https://doi.org/10.1016/S1387-2656(04)10011-2.

    Article  CAS  PubMed  Google Scholar 

  172. Czuczman MS, Emmanouilides C, Darif M, Witzig TE, Gordon LI, Revell S, et al. Treatment-related myelodysplastic syndrome and acute myelogenous leukemia in patients treated with ibritumomab tiuxetan radioimmunotherapy. J Clin Oncol. 2007;25(27):4285–92. https://doi.org/10.1200/JCO.2006.09.2882.

    Article  CAS  PubMed  Google Scholar 

  173. Iagaru A, Gambhir SS, Goris ML. 90Y-ibritumomab therapy in refractory non-Hodgkin's lymphoma: observations from 111In-ibritumomab pretreatment imaging. J Nucl Med. 2008;49(11):1809–12. https://doi.org/10.2967/jnumed.108.052928.

    Article  PubMed  Google Scholar 

  174. Morschhauser F, Radford J, Van Hoof A, Botto B, Rohatiner AZ, Salles G, et al. 90Yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the international, randomized, phase III first-LineIndolent trial. J Clin Oncol. 2013;31(16):1977–83. https://doi.org/10.1200/jco.2012.45.6400.

    Article  CAS  PubMed  Google Scholar 

  175. Wagner JY, Schwarz K, Schreiber S, Schmidt B, Wester HJ, Schwaiger M, et al. Myeloablative anti-CD20 radioimmunotherapy +/− high-dose chemotherapy followed by autologous stem cell support for relapsed/refractory B-cell lymphoma results in excellent long-term survival. Oncotarget. 2013, 4(6):899–910. https://doi.org/10.18632/oncotarget.1037.

  176. Ali AM, Dehdashti F, DiPersio JF, Cashen AF. Radioimmunotherapy-based conditioning for hematopoietic stem cell transplantation: another step forward. Blood Rev. 2016;30(5):389–99. https://doi.org/10.1016/j.blre.2016.04.007.

    Article  PubMed  Google Scholar 

  177. Sutamtewagul G, Link BK. Novel treatment approaches and future perspectives in follicular lymphoma. Ther Adv Hematol. 2019;10:2040620718820510. https://doi.org/10.1177/2040620718820510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(15):3262–9. https://doi.org/10.1200/JCO.2002.11.017.

    Article  CAS  PubMed  Google Scholar 

  179. Eskian M, Khorasanizadeh M, Zinzani PL, Rezaei N. Radioimmunotherapy as the first line of treatment in non-Hodgkin lymphoma. Immunotherapy. 2018;10(8):699–711. https://doi.org/10.2217/imt-2017-0169.

    Article  CAS  PubMed  Google Scholar 

  180. Hohloch K, Windemuth-Kieselbach C, Kolz J, Zinzani PL, Cacchione R, Jurczak W, et al. Radioimmunotherapy (RIT) for follicular lymphoma achieves long term lymphoma control in first line and at relapse: 8-year follow-up data of 281 patients from the international RIT-registry. Br J Haematol. 2019;184(6):949–56. https://doi.org/10.1111/bjh.15712.

    Article  CAS  PubMed  Google Scholar 

  181. Michel RB, Rosario AV, Brechbiel MW, Jackson TJ, Goldenberg DM, Mattes MJ. Experimental therapy of disseminated B-cell lymphoma xenografts with 213Bi-labeled anti-CD74. Nucl Med Biol. 2003;30(7):715–23.

    Article  CAS  PubMed  Google Scholar 

  182. Park SI, Shenoi J, Pagel JM, Hamlin DK, Wilbur DS, Orgun N, et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood. 2010;116(20):4231–9. https://doi.org/10.1182/blood-2010-05-282327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Fanale MA, Younes A. Monoclonal antibodies in the treatment of non-Hodgkin’s lymphoma. Drugs. 2007;67(3):333–50. https://doi.org/10.2165/00003495-200767030-00002.

    Article  CAS  PubMed  Google Scholar 

  184. Ma D, McDevitt MR, Barendswaard E, Lai L, Curcio MJ, Pellegrini V, et al. Radioimmunotherapy for model B cell malignancies using 90Y-labeled anti-CD19 and anti-CD20 monoclonal antibodies. Leukemia. 2002;16(1):60–6. https://doi.org/10.1038/sj.leu.2402320.

    Article  CAS  PubMed  Google Scholar 

  185. Sullivan-Chang L, O’Donnell RT, Tuscano JM. Targeting CD22 in B-cell malignancies: current status and clinical outlook. BioDrugs. 2013;27(4):293–304. https://doi.org/10.1007/s40259-013-0016-7.

    Article  CAS  PubMed  Google Scholar 

  186. Sharkey RM, Karacay H, Goldenberg DM. Improving the treatment of non-Hodgkin lymphoma with antibody-targeted radionuclides. Cancer. 2010;116(4 Suppl):1134–45. https://doi.org/10.1002/cncr.24802.

    Article  CAS  PubMed  Google Scholar 

  187. Morschhauser F, Kraeber-Bodere F, Wegener WA, Harousseau JL, Petillon MO, Huglo D, et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin's lymphoma. J Clin Oncol. 2010;28(23):3709–16. https://doi.org/10.1200/JCO.2009.27.7863.

    Article  CAS  PubMed  Google Scholar 

  188. Chevallier P, Eugene T, Robillard N, Isnard F, Nicolini F, Escoffre-Barbe M, et al. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 dose-escalation study. Lancet Haematol. 2015;2(3):e108–17. https://doi.org/10.1016/S2352-3026(15)00020-4.

    Article  PubMed  Google Scholar 

  189. Witzig TE, Tomblyn MB, Misleh JG, Kio EA, Sharkey RM, Wegener WA, et al. Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: a phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica. 2014;99(11):1738–45. https://doi.org/10.3324/haematol.2014.112110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Bailly C, Bodet-Milin C, Guerard F, Chouin N, Gaschet J, Cherel M, et al. Radioimmunotherapy of lymphomas. In: Giovanella L, editor. Nuclear medicine therapy: side effects and complications. Cham: Springer International Publishing; 2019. p. 113–21.

    Chapter  Google Scholar 

  191. Payandeh Z, Noori E, Khalesi B, Mard-Soltani M, Abdolalizadeh J, Khalili S. Anti-CD37 targeted immunotherapy of B-cell malignancies. Biotechnol Lett. 2018;40(11–12):1459–66. https://doi.org/10.1007/s10529-018-2612-6.

    Article  CAS  PubMed  Google Scholar 

  192. Kolstad A, Madsbu U, Beasley M, Bayne M, Illidge TM, O'Rourke N, et al. LYMRIT 37-01: a phase I/II study of 177Lu-Lilotomab Satetraxetan (Betalutin®) antibody-Radionuclide-Conjugate (ARC) for the treatment of relapsed non-Hodgkin's Lymphoma (NHL)—analysis with 6-month follow-up. Blood. 2018;132(Suppl. 1):2879. https://doi.org/10.1182/blood-2018-99-110555.

    Article  Google Scholar 

  193. Gritti G, Gianatti A, Petronzelli F, De Santis R, Pavoni C, Rossi RL, et al. Evaluation of tenascin-C by tenatumomab in T-cell non-Hodgkin lymphomas identifies a new target for radioimmunotherapy. Oncotarget. 2018;9(11):9766–75. https://doi.org/10.18632/oncotarget.23919.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Aloj L, D'Ambrosio L, Aurilio M, Morisco A, Frigeri F, Caraco C, et al. Radioimmunotherapy with Tenarad, a 131I-labelled antibody fragment targeting the extra-domain A1 of tenascin-C, in patients with refractory Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(5):867–77. https://doi.org/10.1007/s00259-013-2658-6.

    Article  CAS  PubMed  Google Scholar 

  195. Rizzieri DA, Akabani G, Zalutsky MR, Coleman RE, Metzler SD, Bowsher JE, et al. Phase 1 trial study of 131I-labeled chimeric 81C6 monoclonal antibody for the treatment of patients with non-Hodgkin lymphoma. Blood. 2004;104(3):642–8. https://doi.org/10.1182/blood-2003-12-4264.

    Article  CAS  PubMed  Google Scholar 

  196. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9. https://doi.org/10.1200/JCO.2014.56.2025.

    Article  CAS  PubMed  Google Scholar 

  197. Vallera DA, Elson M, Brechbiel MW, Dusenbery KE, Burns LJ, Jaszcz WB, et al. Radiotherapy of CD19 expressing Daudi tumors in nude mice with Yttrium-90-labeled anti-CD19 antibody. Cancer Biother Radiopharm. 2004;19(1):11–23. https://doi.org/10.1089/108497804773391630.

    Article  CAS  PubMed  Google Scholar 

  198. Burke JM, Jurcic JG. Radioimmunotherapy of leukemia. Adv Pharmacol. 2004;51:185–208. https://doi.org/10.1016/S1054-3589(04)51008-6.

    Article  CAS  PubMed  Google Scholar 

  199. De Propris MS, Raponi S, Diverio D, Milani ML, Meloni G, Falini B, et al. High CD33 expression levels in acute myeloid leukemia cells carrying the nucleophosmin (NPM1) mutation. Haematologica. 2011;96(10):1548–51. https://doi.org/10.3324/haematol.2011.043786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Walter RB. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin Investig Drugs. 2018;27(4):339–48. https://doi.org/10.1080/13543784.2018.1452911.

    Article  CAS  PubMed  Google Scholar 

  201. Garfin PM, Feldman EJ. Antibody-based treatment of acute myeloid leukemia. Curr Hematol Malig Rep. 2016;11(6):545–52. https://doi.org/10.1007/s11899-016-0349-7.

    Article  PubMed  Google Scholar 

  202. Jiang Y, Xu P, Yao D, Chen X, Dai H. CD33, CD96 and Death Associated Protein Kinase (DAPK) expression are associated with the survival rate and/or response to the chemotherapy in the patients with Acute Myeloid Leukemia (AML). Med Sci Monit. 2017;23:1725–32. https://doi.org/10.12659/msm.900305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol. 1991;9(3):478–90. https://doi.org/10.1200/JCO.1991.9.3.478.

    Article  CAS  PubMed  Google Scholar 

  204. Jurcic JG, Caron PC, Nikula TK, Papadopoulos EB, Finn RD, Gansow OA, et al. Radiolabeled anti-CD33 monoclonal antibody M195 for myeloid leukemias. Cancer Res. 1995;55(23 Suppl):5908s–10s.

    CAS  PubMed  Google Scholar 

  205. Burke JM, Caron PC, Papadopoulos EB, Divgi CR, Sgouros G, Panageas KS, et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 2003;32(6):549–56. https://doi.org/10.1038/sj.bmt.1704201.

    Article  CAS  PubMed  Google Scholar 

  206. Burke JM, Jurcic JG, Scheinberg DA. Radioimmunotherapy for acute leukemia. Cancer Control: J Moffitt Cancer Center. 2002;9(2):106–13. https://doi.org/10.1177/107327480200900203.

    Article  Google Scholar 

  207. Kozempel J, Mokhodoeva O, Vlk M. Progress in targeted Alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules. 2018;23(3) https://doi.org/10.3390/molecules23030581.

  208. Atallah E, Berger M, Jurcic J, Roboz G, Tse W, Mawad R, et al. A phase 2 study of Actinium-225 (225Ac)-lintuzumab in older patients with untreated acute myeloid leukemia (AML). J Med Imaging Radiat Sci. 2019;50(1):S37. https://doi.org/10.1016/j.jmir.2019.03.113.

    Article  Google Scholar 

  209. Ehninger A, Kramer M, Rollig C, Thiede C, Bornhauser M, von Bonin M, et al. Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J. 2014;4:e218. https://doi.org/10.1038/bcj.2014.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jilani I, Estey E, Huh Y, Joe Y, Manshouri T, Yared M, et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol. 2002;118(4):560–6. https://doi.org/10.1309/1WMW-CMXX-4WN4-T55U.

    Article  PubMed  Google Scholar 

  211. Saint-Paul L, Nguyen CH, Buffiere A, Pais de Barros JP, Hammann A, Landras-Guetta C, et al. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts. Oncotarget. 2016;7(40):64785–97. https://doi.org/10.18632/oncotarget.11622.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Hui TE, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood. 1999;94(4):1237–47.

    Article  CAS  PubMed  Google Scholar 

  213. Matthews DC, Appelbaum FR, Eary JF, Fisher DR, Durack LD, Bush SA, et al. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood. 1995;85(4):1122–31.

    Article  CAS  PubMed  Google Scholar 

  214. Pagel JM, Appelbaum FR, Eary JF, Rajendran J, Fisher DR, Gooley T, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood. 2006;107(5):2184–91. https://doi.org/10.1182/blood-2005-06-2317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nakamae H, Wilbur DS, Hamlin DK, Thakar MS, Santos EB, Fisher DR, et al. Biodistributions, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with the alpha-emitting radionuclides bismuth-213 or astatine-211. Cancer Res. 2009;69(6):2408–15. https://doi.org/10.1158/0008-5472.CAN-08-4363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Chen Y, Kornblit B, Hamlin DK, Sale GE, Santos EB, Wilbur DS, et al. Durable donor engraftment after radioimmunotherapy using alpha-emitter astatine-211-labeled anti-CD45 antibody for conditioning in allogeneic hematopoietic cell transplantation. Blood. 2012;119(5):1130–8. https://doi.org/10.1182/blood-2011-09-380436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Morsink LM, Walter RB. Novel monoclonal antibody-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol. 2019;32(2):116–26. https://doi.org/10.1016/j.beha.2019.05.002.

    Article  PubMed  Google Scholar 

  218. Williams BA, Law A, Hunyadkurti J, Desilets S, Leyton JV, Keating A. Antibody therapies for acute myeloid leukemia: unconjugated, toxin-conjugated, radio-conjugated and multivalent formats. J Clin Med. 2019;8(8):1261. https://doi.org/10.3390/jcm8081261.

    Article  CAS  PubMed Central  Google Scholar 

  219. Yabushita T, Satake H, Maruoka H, Morita M, Katoh D, Shimomura Y, et al. Expression of multiple leukemic stem cell markers is associated with poor prognosis in de novo acute myeloid leukemia. Leuk Lymphoma. 2018;59(9):2144–51. https://doi.org/10.1080/10428194.2017.1410888.

    Article  CAS  PubMed  Google Scholar 

  220. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006;12(10):1167–74. https://doi.org/10.1038/nm1483.

    Article  CAS  PubMed  Google Scholar 

  221. Leyton JV, Gao C, Williams B, Keating A, Minden M, Reilly RM. A radiolabeled antibody targeting CD123(+) leukemia stem cells - initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML. Leukemia Res Rep. 2015;4(2):55–9. https://doi.org/10.1016/j.lrr.2015.07.003.

    Article  Google Scholar 

  222. Leyton JV, Williams B, Gao C, Keating A, Minden M, Reilly RM. MicroSPECT/CT imaging of primary human AML engrafted into the bone marrow and spleen of NOD/SCID mice using 111In-DTPA-NLS-CSL360 radioimmunoconjugates recognizing the CD123+/CD131- epitope expressed by leukemia stem cells. Leuk Res. 2014;38(11):1367–73. https://doi.org/10.1016/j.leukres.2014.09.005.

    Article  CAS  PubMed  Google Scholar 

  223. Leyton JV, Hu M, Gao C, Turner PV, Dick JE, Minden M, et al. Auger electron radioimmunotherapeutic agent specific for the CD123+/CD131− phenotype of the leukemia stem cell population. J Nucl Med. 2011;52(9):1465–73. https://doi.org/10.2967/jnumed.111.087668.

    Article  CAS  PubMed  Google Scholar 

  224. Steiner M, Neri D. Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res. 2011;17(20):6406–16. https://doi.org/10.1158/1078-0432.CCR-11-0483.

    Article  PubMed  Google Scholar 

  225. Baxter LT, Jain RK. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res. 1989;37(1):77–104.

    Article  CAS  PubMed  Google Scholar 

  226. Boucher Y, Baxter LT, Jain RK. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res. 1990;50(15):4478–84.

    CAS  PubMed  Google Scholar 

  227. Jain RK. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 1990;50(3 Suppl):814s–9s.

    CAS  PubMed  Google Scholar 

  228. Prasad V, Baum RP, Oliva JP. Radioimmunotherapy. In: Ahmadzadehfar H, Biersack H-J, Freeman LM, Zuckier LS, editors. Clinical nuclear medicine. Cham: Springer International Publishing; 2020. p. 917–49.

    Chapter  Google Scholar 

  229. Lau J, Lin KS, Bénard F. Past, present, and future: development of Theranostic agents targeting carbonic anhydrase IX. Theranostics. 2017;7(17):4322–39. https://doi.org/10.7150/thno.21848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 2003;9(5):1639–47.

    CAS  PubMed  Google Scholar 

  231. Klein M, Lotem M, Peretz T, Zwas ST, Mizrachi S, Liberman Y, et al. Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J Skin Cancer. 2013;2013:828329. https://doi.org/10.1155/2013/828329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Diamandis EP, Bast RC Jr, Gold P, Chu TM, Magnani JL. Reflection on the discovery of carcinoembryonic antigen, prostate-specific antigen, and cancer antigens CA125 and CA19-9. Clin Chem. 2013;59(1):22–31. https://doi.org/10.1373/clinchem.2012.187047.

    Article  CAS  PubMed  Google Scholar 

  233. Campos-da-Paz M, Dorea JG, Galdino AS, Lacava ZGM. de Fatima Menezes Almeida Santos M. carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: update on biomarker for clinical and biotechnological approaches. Recent Pat Biotechnol. 2018;12(4):269–79. https://doi.org/10.2174/1872208312666180731104244.

    Article  CAS  PubMed  Google Scholar 

  234. Koppe MJ, Bleichrodt RP, Oyen WJ, Boerman OC. Radioimmunotherapy and colorectal cancer. Br J Surg. 2005;92(3):264–76. https://doi.org/10.1002/bjs.4936.

    Article  CAS  PubMed  Google Scholar 

  235. Bertagnolli MM. Radioimmunotherapy for colorectal cancer. Clin Cancer Res. 2005;11(13):4637–8. https://doi.org/10.1158/1078-0432.CCR-05-0485.

    Article  PubMed  Google Scholar 

  236. Sahlmann CO, Homayounfar K, Niessner M, Dyczkowski J, Conradi LC, Braulke F, et al. Repeated adjuvant anti-CEA radioimmunotherapy after resection of colorectal liver metastases: safety, feasibility, and long-term efficacy results of a prospective phase 2 study. Cancer. 2017;123(4):638–49. https://doi.org/10.1002/cncr.30390.

    Article  CAS  PubMed  Google Scholar 

  237. Liersch T, Meller J, Bittrich M, Kulle B, Becker H, Goldenberg DM. Update of carcinoembryonic antigen radioimmunotherapy with (131)I-labetuzumab after salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol. 2007;14(9):2577–90. https://doi.org/10.1245/s10434-006-9328-x.

    Article  PubMed  Google Scholar 

  238. Wong JY, Shibata S, Williams LE, Kwok CS, Liu A, Chu DZ, et al. A phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res. 2003;9(16 Pt 1):5842–52.

    CAS  PubMed  Google Scholar 

  239. Hanaoka H, Kuroki M, Yamaguchi A, Achmad A, Iida Y, Higuchi T, et al. Fractionated radioimmunotherapy with 90Y-labeled fully human anti-CEA antibody. Cancer Biother Radiopharm. 2014;29(2):70–6. https://doi.org/10.1089/cbr.2013.1562.

    Article  CAS  PubMed  Google Scholar 

  240. Cahan B, Leong L, Wagman L, Yamauchi D, Shibata S, Wilzcynski S, et al. Phase I/II trial of anticarcinoembryonic antigen radioimmunotherapy, gemcitabine, and hepatic arterial infusion of fluorodeoxyuridine postresection of liver metastasis for colorectal carcinoma. Cancer Biother Radiopharm. 2017;32(7):258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tagawa ST, Beltran H, Vallabhajosula S, Goldsmith SJ, Osborne J, Matulich D, et al. Anti-prostate-specific membrane antigen-based radioimmunotherapy for prostate cancer. Cancer. 2010;116(4 Suppl):1075–83. https://doi.org/10.1002/cncr.24795.

    Article  CAS  PubMed  Google Scholar 

  242. Kuo HT, Merkens H, Zhang Z, Uribe CF, Lau J, Zhang C, et al. Enhancing treatment efficacy of (177)Lu-PSMA-617 with the conjugation of an albumin-binding motif: preclinical dosimetry and Endoradiotherapy studies. Mol Pharm. 2018;15(11):5183–91. https://doi.org/10.1021/acs.molpharmaceut.8b00720.

    Article  CAS  PubMed  Google Scholar 

  243. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res. 2005;11(19 Pt 2):7195s–200s. https://doi.org/10.1158/1078-0432.CCR-1004-0023.

    Article  CAS  PubMed  Google Scholar 

  244. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol. 2004;22(13):2522–31. https://doi.org/10.1200/JCO.2004.09.154.

    Article  CAS  PubMed  Google Scholar 

  245. Tagawa ST, Akhtar NH, Nikolopoulou A, Kaur G, Robinson B, Kahn R, et al. Bone marrow recovery and subsequent chemotherapy following radiolabeled anti-prostate-specific membrane antigen monoclonal antibody j591 in men with metastatic castration-resistant prostate cancer. Front Oncol. 2013;3:214. https://doi.org/10.3389/fonc.2013.00214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Tagawa ST, Vallabhajosula S, Christos PJ, Jhanwar YS, Batra JS, Lam L, et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 ((177) Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125(15):2561–9. https://doi.org/10.1002/cncr.32072.

    Article  CAS  PubMed  Google Scholar 

  247. Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4(4):306–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Tagawa ST, Vallabhajosula S, Jhanwar Y, Ballman KV, Hackett A, Emmerich L, et al. Phase I dose-escalation study of 225Ac-J591 for progressive metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2018;36(6 Suppl):TPS399. https://doi.org/10.1200/JCO.2018.36.6_suppl.TPS399.

    Article  Google Scholar 

  249. Milenic DE, Baidoo KE, Kim YS, Barkley R, Brechbiel MW. Targeted alpha-particle radiation therapy of HER1-positive disseminated intraperitoneal disease: An investigation of the human anti-EGFR monoclonal antibody. Panitumumab Transl Oncol. 2017;10(4):535–45. https://doi.org/10.1016/j.tranon.2017.04.004.

    Article  PubMed  Google Scholar 

  250. Melzig C, Golestaneh AF, Mier W, Schwager C, Das S, Schlegel J, et al. Combined external beam radiotherapy with carbon ions and tumor targeting endoradiotherapy. Oncotarget. 2018;9(52):29985–30004. https://doi.org/10.18632/oncotarget.25695.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Kim EJ, Kim BS, Choi DB, Chi SG, Choi TH. Enhanced tumor retention of radioiodinated anti-epidermal growth factor receptor antibody using novel bifunctional iodination linker for radioimmunotherapy. Oncol Rep. 2016;35(6):3159–68. https://doi.org/10.3892/or.2016.4706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Milenic DE, Baidoo KE, Kim YS, Brechbiel MW. Evaluation of cetuximab as a candidate for targeted alpha-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. mAbs. 2015;7(1):255–64. https://doi.org/10.4161/19420862.2014.985160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Song IH, Lee TS, Park YS, Lee JS, Lee BC, Moon BS, et al. Immuno-PET imaging and Radioimmunotherapy of 64Cu-/177Lu-labeled anti-EGFR antibody in esophageal squamous cell carcinoma model. J Nucl Med. 2016;57(7):1105–11. https://doi.org/10.2967/jnumed.115.167155.

    Article  CAS  PubMed  Google Scholar 

  254. Fazel J, Rotzer S, Seidl C, Feuerecker B, Autenrieth M, Weirich G, et al. Fractionated intravesical radioimmunotherapy with (213)bi-anti-EGFR-MAb is effective without toxic side-effects in a nude mouse model of advanced human bladder carcinoma. Cancer Biol Ther. 2015;16(10):1526–34. https://doi.org/10.1080/15384047.2015.1071735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chang YJ, Ho CL, Cheng KH, Kuo WI, Lee WC, Lan KL, et al. Biodistribution, pharmacokinetics and radioimmunotherapy of (188)re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Investig New Drugs. 2019; https://doi.org/10.1007/s10637-018-00718-8.

  256. Luo TY, Cheng PC, Chiang PF, Chuang TW, Yeh CH, Lin WJ. 188Re-HYNIC-trastuzumab enhances the effect of apoptosis induced by trastuzumab in HER2-overexpressing breast cancer cells. Ann Nucl Med. 2015;29(1):52–62. https://doi.org/10.1007/s12149-014-0908-8.

    Article  CAS  PubMed  Google Scholar 

  257. Li HK, Morokoshi Y, Nagatsu K, Kamada T, Hasegawa S. Locoregional therapy with alpha-emitting trastuzumab against peritoneal metastasis of human epidermal growth factor receptor 2-positive gastric cancer in mice. Cancer Sci. 2017;108(8):1648–56. https://doi.org/10.1111/cas.13282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Timmermand OV, Elgqvist J, Beattie KA, Orbom A, Larsson E, Eriksson SE, et al. Preclinical efficacy of hK2 targeted [(177)Lu]hu11B6 for prostate cancer theranostics. Theranostics. 2019;9(8):2129–42. https://doi.org/10.7150/thno.31179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Timmermand OV, Nilsson J, Strand SE, Elgqvist J. High resolution digital autoradiographic and dosimetric analysis of heterogeneous radioactivity distribution in xenografted prostate tumors. Med Phys. 2016;43(12):6632. https://doi.org/10.1118/1.4967877.

    Article  CAS  PubMed  Google Scholar 

  260. Vilhelmsson Timmermand O, Larsson E, Ulmert D, Tran TA, Strand S. Radioimmunotherapy of prostate cancer targeting human kallikrein-related peptidase 2. EJNMMI Res. 2016;6(1):27. https://doi.org/10.1186/s13550-016-0181-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Thorek DLJ, Ku AT, Mitsiades N, Veach D, Watson PA, Metha D, et al. Harnessing androgen receptor pathway activation for targeted alpha particle Radioimmunotherapy of breast cancer. Clin Cancer Res. 2019;25(2):881–91. https://doi.org/10.1158/1078-0432.CCR-18-1521.

    Article  CAS  PubMed  Google Scholar 

  262. Allen KJH, Jiao R, Malo ME, Frank C, Fisher DR, Rickles D, et al. Comparative radioimmunotherapy of experimental melanoma with novel humanized antibody to melanin labeled with 213Bismuth and 177Lutetium. Pharmaceutics. 2019;11(7) https://doi.org/10.3390/pharmaceutics11070348.

  263. Kasten BB, Arend RC, Katre AA, Kim H, Fan J, Ferrone S, et al. B7-H3-targeted (212)Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl Med Biol. 2017;47:23–30. https://doi.org/10.1016/j.nucmedbio.2017.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Kasten BB, Gangrade A, Kim H, Fan J, Ferrone S, Ferrone CR, et al. (212)Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl Med Biol. 2018;58:67–73. https://doi.org/10.1016/j.nucmedbio.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  265. Lindenblatt D, Terraneo N, Pellegrini G, Cohrs S, Spycher PR, Vukovic D, et al. Combination of lutetium-177 labelled anti-L1CAM antibody chCE7 with the clinically relevant protein kinase inhibitor MK1775: a novel combination against human ovarian carcinoma. BMC Cancer. 2018;18(1):922. https://doi.org/10.1186/s12885-018-4836-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Basaco T, Pektor S, Bermudez JM, Meneses N, Heller M, Galvan JA, et al. Evaluation of radiolabeled girentuximab in vitro and in vivo. Pharmaceuticals (Basel). 2018;11(4) https://doi.org/10.3390/ph11040132.

  267. Westrom S, Bonsdorff TB, Abbas N, Bruland OS, Jonasdottir TJ, Maelandsmo GM, et al. Evaluation of CD146 as target for Radioimmunotherapy against osteosarcoma. PLoS One. 2016;11(10):e0165382. https://doi.org/10.1371/journal.pone.0165382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Fujiwara K, Koyama K, Suga K, Ikemura M, Saito Y, Hino A, et al. 90Y-labeled anti-ROBO1 monoclonal antibody exhibits antitumor activity against small cell lung cancer xenografts. PLoS One. 2015;10(5):e0125468. https://doi.org/10.1371/journal.pone.0125468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Sugyo A, Tsuji AB, Sudo H, Okada M, Koizumi M, Satoh H, et al. Evaluation of efficacy of Radioimmunotherapy with 90Y-labeled fully human anti-transferrin receptor monoclonal antibody in pancreatic cancer mouse models. PLoS One. 2015;10(4):e0123761. https://doi.org/10.1371/journal.pone.0123761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Derrien A, Gouard S, Maurel C, Gaugler MH, Bruchertseifer F, Morgenstern A, et al. Therapeutic efficacy of alpha-RIT using a (213)bi-anti-hCD138 antibody in a mouse model of ovarian peritoneal Carcinomatosis. Front Med. 2015;2:88. https://doi.org/10.3389/fmed.2015.00088.

    Article  Google Scholar 

  271. Weng D, Jin X, Qin S, Lan X, Chen C, Sun X, et al. Radioimmunotherapy for CD133(+) colonic cancer stem cells inhibits tumor development in nude mice. Oncotarget. 2017;8(27):44004–14. https://doi.org/10.18632/oncotarget.16868.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Lang J, Lan X, Liu Y, Jin X, Wu T, Sun X, et al. Targeting cancer stem cells with an 131I-labeled anti-AC133 monoclonal antibody in human colorectal cancer xenografts. Nucl Med Biol. 2015;42(5):505–12. https://doi.org/10.1016/j.nucmedbio.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  273. Deshayes E, Ladjohounlou R, Le Fur P, Pichard A, Lozza C, Boudousq V, et al. Radiolabeled antibodies against Mullerian-inhibiting substance receptor, type II: new tools for a theranostic approach in ovarian cancer. J Nucl Med. 2018;59(8):1234–42. https://doi.org/10.2967/jnumed.118.208611.

    Article  CAS  PubMed  Google Scholar 

  274. Sugyo A, Tsuji AB, Sudo H, Koizumi M, Ukai Y, Kurosawa G, et al. Efficacy evaluation of combination treatment using gemcitabine and radioimmunotherapy with (90)Y-labeled fully human anti-CD147 monoclonal antibody 059-053 in a BxPC-3 xenograft mouse model of refractory pancreatic cancer. Int J Mol Sci. 2018;19(10) https://doi.org/10.3390/ijms19102979.

  275. Li HK, Sugyo A, Tsuji AB, Morokoshi Y, Minegishi K, Nagatsu K, et al. Alpha-particle therapy for synovial sarcoma in the mouse using an astatine-211-labeled antibody against frizzled homolog 10. Cancer Sci. 2018;109(7):2302–9. https://doi.org/10.1111/cas.13636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ma S. Biology and clinical implications of CD133(+) liver cancer stem cells. Exp Cell Res. 2013;319(2):126–32. https://doi.org/10.1016/j.yexcr.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  277. Wei W, Jiang D, Ehlerding EB, Barnhart TE, Yang Y, Engle JW, et al. CD146-targeted multimodal image-guided Photoimmunotherapy of melanoma. Adv Sci (Weinh). 2019;6(9):1801237. https://doi.org/10.1002/advs.201801237.

    Article  CAS  Google Scholar 

  278. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15(6):366–81. https://doi.org/10.1038/s41571-018-0007-1.

    Article  PubMed  PubMed Central  Google Scholar 

  279. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol. 1994;12(6):1193–203. https://doi.org/10.1200/JCO.1994.12.6.1193.

    Article  CAS  PubMed  Google Scholar 

  280. Fischer E, Chaitanya K, Wuest T, Wadle A, Scott AM, van den Broek M, et al. Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies. Clin Cancer Res. 2012;18(22):6208–18. https://doi.org/10.1158/1078-0432.CCR-12-0644.

    Article  CAS  PubMed  Google Scholar 

  281. Guillermina F-F, Blanca O-G, Myrna Luna G, Clara Santos C, Nallely J-M, Erika A-V, et al. Radiolabeled protein-inhibitor peptides with rapid clinical translation towards imaging and therapy. Curr Med Chem. 2020;27:1–15. https://doi.org/10.2174/0929867327666191223121211.

    Article  CAS  Google Scholar 

  282. Schliemann C, Neri D. Antibody-based vascular tumor targeting. Recent results in cancer research. Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2010;180:201–16. https://doi.org/10.1007/978-3-540-78281-0_12.

    Article  CAS  PubMed  Google Scholar 

  283. Lee SY, Hong YD, Pyun MS, Felipe PM, Choi SJ. Radiolabeling of monoclonal anti-vascular endothelial growth factor receptor 1 (VEGFR 1) with (177)Lu for potential use in radioimmunotherapy. Appl Radiat Isot. 2009;67(7-8):1185–9. https://doi.org/10.1016/j.apradiso.2009.02.006.

    Article  CAS  PubMed  Google Scholar 

  284. Ebbinghaus C, Scheuermann J, Neri D, Elia G. Diagnostic and therapeutic applications of recombinant antibodies: targeting the extra-domain B of fibronectin, a marker of tumor angiogenesis. Curr Pharm Des. 2004;10(13):1537–49. https://doi.org/10.2174/1381612043384808.

    Article  CAS  PubMed  Google Scholar 

  285. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, et al. Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med. 2006;47(7):1127–35.

    CAS  PubMed  Google Scholar 

  286. El-Emir E, Dearling JL, Huhalov A, Robson MP, Boxer G, Neri D, et al. Characterisation and radioimmunotherapy of L19-SIP, an anti-angiogenic antibody against the extra domain B of fibronectin, in colorectal tumour models. Br J Cancer. 2007;96(12):1862–70. https://doi.org/10.1038/sj.bjc.6603806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Spaeth N, Wyss MT, Pahnke J, Biollaz G, Trachsel E, Drandarov K, et al. Radioimmunotherapy targeting the extra domain B of fibronectin in C6 rat gliomas: a preliminary study about the therapeutic efficacy of iodine-131-labeled SIP(L19). Nucl Med Biol. 2006;33(5):661–6. https://doi.org/10.1016/j.nucmedbio.2006.05.001.

    Article  CAS  PubMed  Google Scholar 

  288. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14(7):1931–7. https://doi.org/10.1158/1078-0432.CCR-07-4478.

    Article  CAS  PubMed  Google Scholar 

  289. Ehlerding EB, Lacognata S, Jiang D, Ferreira CA, Goel S, Hernandez R, et al. Targeting angiogenesis for radioimmunotherapy with a (177)Lu-labeled antibody. Eur J Nucl Med Mol Imaging. 2018;45(1):123–31. https://doi.org/10.1007/s00259-017-3793-2.

    Article  CAS  PubMed  Google Scholar 

  290. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013;13(12):871–82. https://doi.org/10.1038/nrc3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Liu F, Qi L, Liu B, Liu J, Zhang H, Che D, et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS One. 2015;10(3):e0116683. https://doi.org/10.1371/journal.pone.0116683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Aung W, Tsuji AB, Sudo H, Sugyo A, Ukai Y, Kouda K, et al. Radioimmunotherapy of pancreatic cancer xenografts in nude mice using 90Y-labeled anti-alpha6beta4 integrin antibody. Oncotarget. 2016;7(25):38835–44. https://doi.org/10.18632/oncotarget.9631.

    Article  PubMed  PubMed Central  Google Scholar 

  293. Veeravagu A, Liu Z, Niu G, Chen K, Jia B, Cai W, et al. Integrin αvβ3-targeted Radioimmunotherapy of glioblastoma Multiforme. Clin Cancer Res. 2008;14(22):7330–9. https://doi.org/10.1158/1078-0432.Ccr-08-0797.

    Article  CAS  PubMed  Google Scholar 

  294. Riva P, Franceschi G, Riva N, Casi M, Santimaria M, Adamo M. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med. 2000;27(5):601–9. https://doi.org/10.1007/s002590050549.

    Article  CAS  PubMed  Google Scholar 

  295. Reardon DA, Zalutsky MR, Bigner DD. Antitenascin-C monoclonal antibody radioimmunotherapy for malignant glioma patients. Expert Rev Anticancer Ther. 2007;7(5):675–87. https://doi.org/10.1586/14737140.7.5.675.

    Article  CAS  PubMed  Google Scholar 

  296. Raghavan R, Howell RW, Zalutsky MR. A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers. Biomed Phys Eng Express. 2017;3(3) https://doi.org/10.1088/2057-1976/aa6db9.

  297. Aarts F, Bleichrodt RP, Oyen WJ, Boerman OC. Intracavitary radioimmunotherapy to treat solid tumors. Cancer Biother Radiopharm. 2008;23(1):92–107. https://doi.org/10.1089/cbr.2007.0412.

    Article  CAS  PubMed  Google Scholar 

  298. Huber R, Seidl C, Schmid E, Seidenschwang S, Becker KF, Schuhmacher C, et al. Locoregional alpha-radioimmunotherapy of intraperitoneal tumor cell dissemination using a tumor-specific monoclonal antibody. Clin Cancer Res. 2003;9(10 Pt 2):3922S–8S.

    CAS  PubMed  Google Scholar 

  299. Kinuya S, Yokoyama K, Kawashima A, Hiramatsu T, Konishi S, Shuke N, et al. Pharmacologic intervention with angiotensin II and kininase inhibitor enhanced efficacy of radioimmunotherapy in human colon cancer xenografts. J Nucl Med. 2000;41(7):1244–9.

    CAS  PubMed  Google Scholar 

  300. Chen A. PARP inhibitors: its role in treatment of cancer. Chin J Cancer. 2011;30(7):463–71. https://doi.org/10.5732/cjc.011.10111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Gill MR, Falzone N, Du Y, Vallis KA. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol. 2017;18(7):e414–e23. https://doi.org/10.1016/S1470-2045(17)30379-0.

    Article  CAS  PubMed  Google Scholar 

  302. Al-Ejeh F, Shi W, Miranda M, Simpson PT, Vargas AC, Song S, et al. Treatment of triple-negative breast cancer using anti-EGFR-directed radioimmunotherapy combined with radiosensitizing chemotherapy and PARP inhibitor. J Nucl Med. 2013;54(6):913–21. https://doi.org/10.2967/jnumed.112.111534.

    Article  CAS  PubMed  Google Scholar 

  303. Repetto-Llamazares AHV, Malenge MM, O'Shea A, Eiriksdottir B, Stokke T, Larsen RH, et al. Combination of (177) Lu-lilotomab with rituximab significantly improves the therapeutic outcome in preclinical models of non-Hodgkin's lymphoma. Eur J Haematol. 2018;101(4):522–31. https://doi.org/10.1111/ejh.13139.

    Article  CAS  PubMed  Google Scholar 

  304. Blumenthal RD, Kashi R, Stephens R, Sharkey RM, Goldenberg DM. Improved radioimmunotherapy of colorectal cancer xenografts using antibody mixtures against carcinoembryonic antigen and colon-specific antigen-p. Cancer Immunol Immunother. 1991;32(5):303–10. https://doi.org/10.1007/bf01789048.

    Article  CAS  PubMed  Google Scholar 

  305. Milenic DE, Brady ED, Garmestani K, Albert PS, Abdulla A, Brechbiel MW. Improved efficacy of alpha-particle-targeted radiation therapy: dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer. 2010;116(4 Suppl):1059–66. https://doi.org/10.1002/cncr.24793.

    Article  CAS  PubMed  Google Scholar 

  306. Pagel JM, Pantelias A, Hedin N, Wilbur S, Saganic L, Lin Y, et al. Evaluation of CD20, CD22, and HLA-DR targeting for radioimmunotherapy of B-cell lymphomas. Cancer Res. 2007;67(12):5921–8. https://doi.org/10.1158/0008-5472.CAN-07-0080.

    Article  CAS  PubMed  Google Scholar 

  307. Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019;20(8):e452–e63. https://doi.org/10.1016/S1470-2045(19)30171-8.

    Article  CAS  PubMed  Google Scholar 

  308. Levy A, Nigro G, Sansonetti PJ, Deutsch E. Candidate immune biomarkers for radioimmunotherapy. Biochim Biophys Acta Rev Cancer. 2017;1868(1):58–68. https://doi.org/10.1016/j.bbcan.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  309. Heery CR, Madan RA, Stein MN, Stadler WM, Di Paola RS, Rauckhorst M, et al. Samarium-153-EDTMP (Quadramet(R)) with or without vaccine in metastatic castration-resistant prostate cancer: a randomized Phase 2 trial. Oncotarget. 2016;7(42):69014–23. https://doi.org/10.18632/oncotarget.10883.

    Article  PubMed  PubMed Central  Google Scholar 

  310. Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody fragment and Affibody ImmunoPET imaging agents: Radiolabelling strategies and applications. ChemMedChem. 2018;13(23):2466–78. https://doi.org/10.1002/cmdc.201800624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Xenaki KT, Oliveira S, van Bergen En Henegouwen PMP. Antibody or antibody fragments: implications for molecular imaging and targeted therapy of solid tumors. Front Immunol. 2017;8:1287. https://doi.org/10.3389/fimmu.2017.01287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Elgqvist J, Andersson H, Bernhardt P, Back T, Claesson I, Hultborn R, et al. Administered activity and metastatic cure probability during radioimmunotherapy of ovarian cancer in nude mice with 211At-MX35 F(ab')2. Int J Radiat Oncol Biol Phys. 2006;66(4):1228–37. https://doi.org/10.1016/j.ijrobp.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  313. Back T, Chouin N, Lindegren S, Kahu H, Jensen H, Albertsson P, et al. Cure of human ovarian carcinoma solid xenografts by fractionated alpha-radioimmunotherapy with (211)at-MX35-F(ab')2: influence of absorbed tumor dose and effect on long-term survival. J Nucl Med. 2017;58(4):598–604. https://doi.org/10.2967/jnumed.116.178327.

    Article  CAS  PubMed  Google Scholar 

  314. Tolmachev V, Nilsson FY, Widstrom C, Andersson K, Rosik D, Gedda L, et al. 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors. J Nucl Med. 2006;47(5):846–53.

    CAS  PubMed  Google Scholar 

  315. Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, et al. Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res. 2007;67(6):2773–82. https://doi.org/10.1158/0008-5472.CAN-06-1630.

    Article  CAS  PubMed  Google Scholar 

  316. Wiehr S, Buhler P, Gierschner D, Wolf P, Rolle AM, Kesenheimer C, et al. Pharmacokinetics and PET imaging properties of two recombinant anti-PSMA antibody fragments in comparison to their parental antibody. Prostate. 2014;74(7):743–55. https://doi.org/10.1002/pros.22794.

    Article  CAS  PubMed  Google Scholar 

  317. Tavare R, McCracken MN, Zettlitz KA, Knowles SM, Salazar FB, Olafsen T, et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A. 2014;111(3):1108–13. https://doi.org/10.1073/pnas.1316922111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Lutje S, Franssen GM, Sharkey RM, Laverman P, Rossi EA, Goldenberg DM, et al. Anti-CEA antibody fragments labeled with [(18)F]AlF for PET imaging of CEA-expressing tumors. Bioconjug Chem. 2014;25(2):335–41. https://doi.org/10.1021/bc4004926.

    Article  CAS  PubMed  Google Scholar 

  319. Frejd FY, Kim KT. Affibody molecules as engineered protein drugs. Exp Mol Med. 2017;49(3):e306. https://doi.org/10.1038/emm.2017.35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Goodwin DA, Meares CF, McTigue M, Chaovapong W, Diamanti CI, Ransone CH, et al. Pretargeted immunoscintigraphy: effect of hapten valency on murine tumor uptake. J Nucl Med. 1992;33(11):2006–13.

    CAS  PubMed  Google Scholar 

  321. Bailly C, Bodet-Milin C, Rousseau C, Faivre-Chauvet A, Kraeber-Bodere F, Barbet J. Pretargeting for imaging and therapy in oncological nuclear medicine. EJNMMI Radiopharm Chem. 2017;2(1):6. https://doi.org/10.1186/s41181-017-0026-8.

    Article  PubMed  PubMed Central  Google Scholar 

  322. Verhoeven M, Seimbille Y, Dalm SU. Therapeutic applications of pretargeting. Pharmaceutics. 2019;11(9) https://doi.org/10.3390/pharmaceutics11090434.

  323. Liu G. A revisit to the Pretargeting concept-a target conversion. Front Pharmacol. 2018;9:1476. https://doi.org/10.3389/fphar.2018.01476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Altai M, Membreno R, Cook B, Tolmachev V, Zeglis BM. Pretargeted imaging and therapy. J Nucl Med. 2017;58(10):1553–9. https://doi.org/10.2967/jnumed.117.189944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Patra M, Zarschler K, Pietzsch HJ, Stephan H, Gasser G. New insights into the pretargeting approach to image and treat tumours. Chem Soc Rev. 2016;45(23):6415–31. https://doi.org/10.1039/c5cs00784d.

    Article  CAS  PubMed  Google Scholar 

  326. Steen EJL, Edem PE, Norregaard K, Jorgensen JT, Shalgunov V, Kjaer A, et al. Pretargeting in nuclear imaging and radionuclide therapy: improving efficacy of theranostics and nanomedicines. Biomaterials. 2018;179:209–45. https://doi.org/10.1016/j.biomaterials.2018.06.021.

    Article  CAS  PubMed  Google Scholar 

  327. Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. Am J Nucl Med Mol Imaging. 2014;4(2):96–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Paganelli G, Chinol M, Maggiolo M, Sidoli A, Corti A, Baroni S, et al. The three-step pretargeting approach reduces the human anti-mouse antibody response in patients submitted to radioimmunoscintigraphy and radioimmunotherapy. Eur J Nucl Med. 1997;24(3):350–1. https://doi.org/10.1007/bf01728778.

    Article  CAS  PubMed  Google Scholar 

  329. Paganelli G, Magnani P, Zito F, Villa E, Sudati F, Lopalco L, et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991;51(21):5960–6.

    CAS  PubMed  Google Scholar 

  330. Paganelli G, Malcovati M, Fazio F. Monoclonal antibody pretargetting techniques for tumour localization: the avidin-biotin system. International workshop on techniques for amplification of tumour targetting. Nucl Med Commun. 1991;12(3):211–34. https://doi.org/10.1097/00006231-199103000-00006.

    Article  CAS  PubMed  Google Scholar 

  331. Weiden PL, Breitz HB, Press O, Appelbaum JW, Bryan JK, Gaffigan S, et al. Pretargeted radioimmunotherapy (PRIT) for treatment of non-Hodgkin's lymphoma (NHL): initial phase I/II study results. Cancer Biother Radiopharm. 2000;15(1):15–29. https://doi.org/10.1089/cbr.2000.15.15.

    Article  CAS  PubMed  Google Scholar 

  332. Domingo RJ, Reilly RM. Pre-targeted radioimmunotherapy of human colon cancer xenografts in athymic mice using streptavidin-CC49 monoclonal antibody and 90Y-DOTA-biotin. Nucl Med Commun. 2000;21(1):89–96. https://doi.org/10.1097/00006231-200001000-00015.

    Article  CAS  PubMed  Google Scholar 

  333. Frost SH, Back T, Chouin N, Hultborn R, Jacobsson L, Elgqvist J, et al. Comparison of 211At-PRIT and 211At-RIT of ovarian microtumors in a nude mouse model. Cancer Biother Radiopharm. 2013;28(2):108–14. https://doi.org/10.1089/cbr.2012.1281.

    Article  CAS  PubMed  Google Scholar 

  334. Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015;20(7):838–47. https://doi.org/10.1016/j.drudis.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  335. Le Doussal JM, Martin M, Gautherot E, Delaage M, Barbet J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med. 1989;30(8):1358–66.

    PubMed  Google Scholar 

  336. Cheal SM, Fung EK, Patel M, Xu H, Guo HF, Zanzonico PB, et al. Curative multicycle radioimmunotherapy monitored by quantitative SPECT/CT-based theranostics, using bispecific antibody pretargeting strategy in colorectal cancer. J Nucl Med. 2017;58(11):1735–42. https://doi.org/10.2967/jnumed.117.193250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Chang CH, Sharkey RM, Rossi EA, Karacay H, McBride W, Hansen HJ, et al. Molecular advances in pretargeting radioimunotherapy with bispecific antibodies. Mol Cancer Ther. 2002;1(7):553–63.

    CAS  PubMed  Google Scholar 

  338. Gruaz-Guyon A, Janevik-Ivanovska E, Raguin O, De Labriolle-Vaylet C, Barbet J. Radiolabeled bivalent haptens for tumor immunodetection and radioimmunotherapy. Q J Nucl Med. 2001;45(2):201–6.

    CAS  PubMed  Google Scholar 

  339. Green DJ, Frayo SL, Lin Y, Hamlin DK, Fisher DR, Frost SH, et al. Comparative analysis of bispecific antibody and streptavidin-targeted radioimmunotherapy for B-cell cancers. Cancer Res. 2016;76(22):6669–79. https://doi.org/10.1158/0008-5472.CAN-16-0571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Green DJ, O'Steen S, Lin Y, Comstock ML, Kenoyer AL, Hamlin DK, et al. CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies. Blood. 2018;131(6):611–20. https://doi.org/10.1182/blood-2017-09-807610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. van Rij CM, Frielink C, Goldenberg DM, Sharkey RM, Lutje S, McBride WJ, et al. Pretargeted radioimmunotherapy of prostate cancer with an anti-TROP-2xAnti-HSG bispecific antibody and a (177)Lu-labeled peptide. Cancer Biother Radiopharm. 2014;29(8):323–9. https://doi.org/10.1089/cbr.2014.1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. van Rij CM, Lutje S, Frielink C, Sharkey RM, Goldenberg DM, Franssen GM, et al. Pretargeted immuno-PET and radioimmunotherapy of prostate cancer with an anti-TROP-2 x anti-HSG bispecific antibody. Eur J Nucl Med Mol Imaging. 2013;40(9):1377–83. https://doi.org/10.1007/s00259-013-2434-7.

    Article  CAS  PubMed  Google Scholar 

  343. Schoffelen R, Boerman OC, Goldenberg DM, Sharkey RM, van Herpen CM, Franssen GM, et al. Development of an imaging-guided CEA-pretargeted radionuclide treatment of advanced colorectal cancer: first clinical results. Br J Cancer. 2013;109(4):934–42. https://doi.org/10.1038/bjc.2013.376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Bodet-Milin C, Bailly C, Touchefeu Y, Frampas E, Bourgeois M, Rauscher A, et al. Clinical results in medullary thyroid carcinoma suggest high potential of Pretargeted Immuno-PET for tumor imaging and Theranostic approaches. Front Med. 2019;6:124. https://doi.org/10.3389/fmed.2019.00124.

    Article  Google Scholar 

  345. Cheal SM, Xu H, Guo H-F, Patel M, Punzalan B, Fung EK, et al. Theranostic pretargeted radioimmunotherapy of internalizing solid tumor antigens in human tumor xenografts in mice: curative treatment of HER2-positive breast carcinoma. Theranostics. 2018;8(18):5106–25. https://doi.org/10.7150/thno.26585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Zeglis BM, Brand C, Abdel-Atti D, Carnazza KE, Cook BE, Carlin S, et al. Optimization of a pretargeted strategy for the PET imaging of colorectal carcinoma via the modulation of radioligand pharmacokinetics. Mol Pharm. 2015;12(10):3575–87. https://doi.org/10.1021/acs.molpharmaceut.5b00294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Membreno R, Cook BE, Fung K, Lewis JS, Zeglis BM. Click-mediated pretargeted radioimmunotherapy of colorectal carcinoma. Mol Pharm. 2018;15(4):1729–34. https://doi.org/10.1021/acs.molpharmaceut.8b00093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Kuijpers WH, Bos ES, Kaspersen FM, Veeneman GH, van Boeckel CA. Specific recognition of antibody-oligonucleotide conjugates by radiolabeled antisense nucleotides: a novel approach for two-step radioimmunotherapy of cancer. Bioconjug Chem. 1993;4(1):94–102. https://doi.org/10.1021/bc00019a013.

    Article  CAS  PubMed  Google Scholar 

  349. Liu G, Mang'era K, Liu N, Gupta S, Rusckowski M, Hnatowich DJ. Tumor pretargeting in mice using (99m)Tc-labeled morpholino, a DNA analog. J Nucl Med. 2002;43(3):384–91.

    CAS  PubMed  Google Scholar 

  350. Liu G, Dou S, Baker S, Akalin A, Cheng D, Chen L, et al. A preclinical 188Re tumor therapeutic investigation using MORF/cMORF pretargeting and an antiTAG-72 antibody CC49. Cancer Biol Ther. 2010;10(8):767–74. https://doi.org/10.4161/cbt.10.8.12879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Houghton JL, Membreno R, Abdel-Atti D, Cunanan KM, Carlin S, Scholz WW, et al. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand Diels-Alder click chemistry. Mol Cancer Ther. 2017;16(1):124–33. https://doi.org/10.1158/1535-7163.Mct-16-0503.

    Article  CAS  PubMed  Google Scholar 

  352. Poty S, Carter LM, Mandleywala K, Membreno R, Abdel-Atti D, Ragupathi A, et al. Leveraging bioorthogonal click chemistry to improve (225)Ac-radioimmunotherapy of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2019;25(2):868–80. https://doi.org/10.1158/1078-0432.CCR-18-1650.

    Article  CAS  PubMed  Google Scholar 

  353. Shah MA, Zhang X, Rossin R, Robillard MS, Fisher DR, Bueltmann T, et al. Metal-free cycloaddition chemistry driven pretargeted radioimmunotherapy using alpha-particle radiation. Bioconjug Chem. 2017;28(12):3007–15. https://doi.org/10.1021/acs.bioconjchem.7b00612.

    Article  CAS  PubMed  Google Scholar 

  354. Loke KS, Padhy AK, Ng DC, Goh AS, Divgi C. Dosimetric considerations in radioimmunotherapy and systemic radionuclide therapies: a review. World J Nucl Med. 2011;10(2):122–38. https://doi.org/10.4103/1450-1147.89780.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Flux GD, Sjogreen Gleisner K, Chiesa C, Lassmann M, Chouin N, Gear J, et al. From fixed activities to personalized treatments in radionuclide therapy: lost in translation? Eur J Nucl Med Mol Imaging. 2018;45(1):152–4. https://doi.org/10.1007/s00259-017-3859-1.

    Article  CAS  PubMed  Google Scholar 

  356. Brans B, Bodei L, Giammarile F, Linden O, Luster M, Oyen WJG, et al. Clinical radionuclide therapy dosimetry: the quest for the "holy Gray". Eur J Nucl Med Mol Imaging. 2007;34(5):772–86. https://doi.org/10.1007/s00259-006-0338-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med. 2015;2:12. https://doi.org/10.3389/fmed.2015.00012.

    Article  Google Scholar 

  358. Ljungberg M, Sjogreen GK. Personalized dosimetry for radionuclide therapy using molecular imaging tools. Biomedicines. 2016;4(4) https://doi.org/10.3390/biomedicines4040025.

  359. Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative imaging for targeted radionuclide therapy dosimetry - technical review. Theranostics. 2017;7(18):4551–65. https://doi.org/10.7150/thno.19782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Bardiès M, Buvat I. Dosimetry in nuclear medicine therapy: what are the specifics in image quantification for dosimetry? Q J Nucl Med Mol Imaging. 2011;55(1):5–20.

    PubMed  Google Scholar 

  361. Santoro L, Boutaleb S, Garambois V, Bascoul-Mollevi C, Boudousq V, Kotzki PO, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. J Nucl Med. 2009;50(12):2033–41. https://doi.org/10.2967/jnumed.109.066993.

    Article  PubMed  Google Scholar 

  362. Ferrer L, Malek E, Bodet-Milin C, Legouill S, Prangere T, Robu D, et al. Comparisons of dosimetric approaches for fractionated radioimmunotherapy of non-Hodgkin lymphoma. Q J Nucl Med Mol Imaging. 2012;56(6):529–37.

    CAS  PubMed  Google Scholar 

  363. Morschhauser F, Dekyndt B, Baillet C, Barthelemy C, Malek E, Fulcrand J, et al. A new pharmacokinetic model for (90)Y-ibritumomab tiuxetan based on 3-dimensional dosimetry. Sci Rep. 2018;8(1):14860. https://doi.org/10.1038/s41598-018-33160-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Kratochwil C, Schmidt K, Afshar-Oromieh A, Bruchertseifer F, Rathke H, Morgenstern A, et al. Targeted alpha therapy of mCRPC: dosimetry estimate of (213)bismuth-PSMA-617. Eur J Nucl Med Mol Imaging. 2018;45(1):31–7. https://doi.org/10.1007/s00259-017-3817-y.

    Article  CAS  PubMed  Google Scholar 

  365. Dewaraja YK, Schipper MJ, Shen J, Smith LB, Murgic J, Savas H, et al. Tumor-absorbed dose predicts progression-free survival following (131)I-Tositumomab Radioimmunotherapy. J Nucl Med. 2014;55(7):1047–53. https://doi.org/10.2967/jnumed.113.136044.

    Article  CAS  PubMed  Google Scholar 

  366. Schwartz J, Humm JL, Divgi CR, Larson SM, O'Donoghue JA. Bone marrow dosimetry using 124I-PET. J Nucl Med. 2012;53(4):615–21. https://doi.org/10.2967/jnumed.111.096453.

    Article  CAS  PubMed  Google Scholar 

  367. Woliner-van der Weg W, Schoffelen R, Hobbs RF, Gotthardt M, Goldenberg DM, Sharkey RM, et al. Tumor and red bone marrow dosimetry: comparison of methods for prospective treatment planning in pretargeted radioimmunotherapy. EJNMMI Phys. 2015;2(1):5. https://doi.org/10.1186/s40658-014-0104-x.

    Article  PubMed  PubMed Central  Google Scholar 

  368. La MT, Tran VH, Kim HK. Progress of coordination and utilization of Zirconium-89 for positron emission tomography (PET) studies. Nucl Med Mol Imaging. 2019;53(2):115–24. https://doi.org/10.1007/s13139-019-00584-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Jauw YW, Zijlstra JM, de Jong D, Vugts DJ, Zweegman S, Hoekstra OS, et al. Performance of 89Zr-labeled-rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma. PLoS One. 2017;12(1):e0169828. https://doi.org/10.1371/journal.pone.0169828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Muylle K, Flamen P, Vugts DJ, Guiot T, Ghanem G, Meuleman N, et al. Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: impact of preloading with unlabelled rituximab. Eur J Nucl Med Mol Imaging. 2015;42(8):1304–14. https://doi.org/10.1007/s00259-015-3025-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. O'Donoghue JA, Lewis JS, Pandit-Taskar N, Fleming SE, Schoder H, Larson SM, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for (89)Zr-Trastuzumab in patients with Esophagogastric cancer. J Nucl Med. 2018;59(1):161–6. https://doi.org/10.2967/jnumed.117.194555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Ulaner GA, Lyashchenko SK, Riedl C, Ruan S, Zanzonico PB, Lake D, et al. First-in-human human epidermal growth factor receptor 2-targeted imaging using (89)Zr-Pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J Nucl Med. 2018;59(6):900–6. https://doi.org/10.2967/jnumed.117.202010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Menke-van der Houven van Oordt CW, McGeoch A, Bergstrom M, McSherry I, Smith DA, Cleveland M, et al. Immuno-PET imaging to assess target engagement: experience from (89)Zr-anti-HER3 mAb (GSK2849330) in patients with solid tumors. J Nucl Med. 2019;60(7):902–9. https://doi.org/10.2967/jnumed.118.214726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Pandit-Taskar N, O'Donoghue JA, Durack JC, Lyashchenko SK, Cheal SM, Beylergil V, et al. A phase I/II study for analytic validation of 89Zr-J591 ImmunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res. 2015;21(23):5277–85. https://doi.org/10.1158/1078-0432.CCR-15-0552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. van Es SC, Brouwers AH, Mahesh SVK, Leliveld-Kors AM, de Jong IJ, Lub-de Hooge MN, et al. (89)Zr-bevacizumab PET: potential early indicator of Everolimus efficacy in patients with metastatic renal cell carcinoma. J Nucl Med. 2017;58(6):905–10. https://doi.org/10.2967/jnumed.116.183475.

    Article  CAS  PubMed  Google Scholar 

  376. Jansen MH, van Zanten SEM V, van Vuurden DG, Huisman MC, Vugts DJ, Hoekstra OS, et al. Molecular drug imaging: (89)Zr-Bevacizumab PET in children with diffuse intrinsic pontine glioma. J Nucl Med. 2017;58(5):711–6. https://doi.org/10.2967/jnumed.116.180216.

    Article  CAS  PubMed  Google Scholar 

  377. Oosting SF, Brouwers AH, van Es SC, Nagengast WB, Oude Munnink TH, Lub-de Hooge MN, et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J Nucl Med. 2015;56(1):63–9. https://doi.org/10.2967/jnumed.114.144840.

    Article  CAS  PubMed  Google Scholar 

  378. Hekman MCH, Rijpkema M, Aarntzen EH, Mulder SF, Langenhuijsen JF, Oosterwijk E, et al. Positron emission tomography/computed tomography with (89)Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur Urol. 2018;74(3):257–60. https://doi.org/10.1016/j.eururo.2018.04.026.

    Article  PubMed  Google Scholar 

  379. den Hollander MW, Bensch F, Glaudemans AW, Oude Munnink TH, Enting RH, den Dunnen WF, et al. TGF-beta antibody uptake in recurrent high-grade glioma imaged with 89Zr-Fresolimumab PET. J Nucl Med. 2015;56(9):1310–4. https://doi.org/10.2967/jnumed.115.154401.

    Article  CAS  Google Scholar 

  380. Even AJ, Hamming-Vrieze O, van Elmpt W, Winnepenninckx VJ, Heukelom J, Tesselaar ME, et al. Quantitative assessment of Zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget. 2017;8(3):3870–80. https://doi.org/10.18632/oncotarget.13910.

    Article  PubMed  Google Scholar 

  381. Menke-van der Houven van Oordt CW, Gootjes EC, Huisman MC, Vugts DJ, Roth C, Luik AM, et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget. 2015;6(30):30384–93. https://doi.org/10.18632/oncotarget.4672.

    Article  PubMed  PubMed Central  Google Scholar 

  382. Makris NE, Boellaard R, van Lingen A, Lammertsma AA, van Dongen GA, Verheul HM, et al. PET/CT-derived whole-body and bone marrow dosimetry of 89Zr-cetuximab. J Nucl Med. 2015;56(2):249–54. https://doi.org/10.2967/jnumed.114.147819.

    Article  CAS  PubMed  Google Scholar 

  383. Lamberts LE, Menke-van der Houven van Oordt CW, ter Weele EJ, Bensch F, Smeenk MM, Voortman J, et al. ImmunoPET with anti-Mesothelin antibody in patients with pancreatic and ovarian cancer before anti-Mesothelin antibody-drug conjugate treatment. Clin Cancer Res. 2016;22(7):1642–52. https://doi.org/10.1158/1078-0432.CCR-15-1272.

    Article  CAS  PubMed  Google Scholar 

  384. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8. https://doi.org/10.1038/s41591-018-0255-8.

    Article  CAS  PubMed  Google Scholar 

  385. Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen G, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat Commun. 2018;9(1):4664. https://doi.org/10.1038/s41467-018-07131-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Carrasquillo JA, Fine BM, Pandit-Taskar N, Larson SM, Fleming SE, Fox JJ, et al. Imaging patients with metastatic castration-resistant prostate cancer using (89)Zr-DFO-MSTP2109A anti-STEAP1 antibody. J Nucl Med. 2019;60(11):1517–23. https://doi.org/10.2967/jnumed.118.222844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Ulaner GA, Hyman DM, Lyashchenko SK, Lewis JS, Carrasquillo JA. 89Zr-Trastuzumab PET/CT for detection of human epidermal growth factor receptor 2-positive metastases in patients with human epidermal growth factor receptor 2-negative primary breast cancer. Clin Nucl Med. 2017;42(12):912–7. https://doi.org/10.1097/RLU.0000000000001820.

    Article  PubMed  PubMed Central  Google Scholar 

  388. Ulaner GA, Hyman DM, Ross DS, Corben A, Chandarlapaty S, Goldfarb S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-Trastuzumab PET/CT. J Nucl Med. 2016;57(10):1523–8. https://doi.org/10.2967/jnumed.115.172031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Pandit-Taskar N, O'Donoghue JA, Beylergil V, Lyashchenko S, Ruan S, Solomon SB, et al. 89Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41(11):2093–105. https://doi.org/10.1007/s00259-014-2830-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Makris NE, van Velden FH, Huisman MC, Menke CW, Lammertsma AA, Boellaard R. Validation of simplified dosimetry approaches in 89Zr-PET/CT: the use of manual versus semi-automatic delineation methods to estimate organ absorbed doses. Med Phys. 2014;41(10):102503. https://doi.org/10.1118/1.4895973.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bénard .

Editor information

Editors and Affiliations

Ethics declarations

The authors report no conflict of interest with the material presented in this study. Dr. François Bénard is co-founder, director, and shareholder of Alpha-9 Theranostics, a radiopharmaceutical company. No other potential conflicts of interest relevant to this article exist.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rousseau, J., Lau, J., Bénard, F. (2022). Radiolabeled Antibodies for Cancer Radioimmunotherapy. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics