Skip to main content

Radiolabeled Antibodies for Cancer Imaging and Therapy

  • Protocol
  • First Online:
Antibody Engineering

Abstract

Radiolabeled antibodies were studied first for tumor detection by single-photon imaging, but FDG PET stopped these developments. In the meantime, radiolabeled antibodies were shown to be effective in the treatment of lymphoma. Radiolabeling techniques are well established and radiolabeled antibodies are a clinical and commercial reality that deserves further studies to advance their application in earlier phase of the diseases and to test combination and adjuvant therapies including radiolabeled antibodies in hematological diseases. In solid tumors, more resistant to radiations and less accessible to large molecules such as antibodies, clinical efficacy remains limited. However, radiolabeled antibodies used in minimal or small-size metastatic disease have shown promising clinical efficacy. In the adjuvant setting, ongoing clinical trials show impressive increase in survival in otherwise unmanageable tumors. New technologies are being developed over the years: recombinant antibodies and pretargeting approaches have shown potential in increasing the therapeutic index of radiolabeled antibodies. In several cases, clinical trials have confirmed preclinical studies. Finally, new radionuclides, such as lutetium-177, with better physical properties will further improve the safety of radioimmunotherapy. Alpha particle and Auger electron emitters offer the theoretical possibility to kill isolated tumor cells and microscopic clusters of tumor cells, opening the perspective of killing the last tumor cell, which is the ultimate challenge in cancer therapy. Preliminary preclinical and preliminary clinical results confirm the feasibility of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldenberg DM, DeLand F, Kim E et al (1978) Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med 298:1384–1386

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava SC (1987) Investigators review potential of antibodies in cancer detection and therapy. J Nucl Med 28:143–147

    CAS  PubMed  Google Scholar 

  3. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  4. Koprowski H, Steplewski Z, Herlyn D, Herlyn M (1978) Study of antibodies against human melanoma produced by somatic cell hybrids. Proc Natl Acad Sci U S A 75:3405–3409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Herlyn M, Steplewski Z, Herlyn D, Koprowski H (1979) Colorectal carcinoma-specific antigen: detection by means of monoclonal antibodies. Proc Natl Acad Sci U S A 76:1438–1442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ballou B, Levine G, Hakala TR, Solter D (1979) Tumor location detected with radioactively labeled monoclonal antibody and external scintigraphy. Science 206:844–847

    Article  CAS  PubMed  Google Scholar 

  7. Anger HO (1964) Scintillation camera with multichannel collimators. J Nucl Med 5:515–531

    CAS  PubMed  Google Scholar 

  8. Hunter WM, Greenwood FC (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194:495–496

    Article  CAS  PubMed  Google Scholar 

  9. Khaw BA, Cooney J, Edgington T, Strauss HW (1986) Differences in experimental tumor localization of dual-labeled monoclonal antibody. J Nucl Med 27:1293–1299

    CAS  PubMed  Google Scholar 

  10. Barbet J, Peltier P, Bardet S et al (1998) Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA  ×  anti-DTPA-indium bispecific antibody. J Nucl Med 39:1172–1178

    CAS  PubMed  Google Scholar 

  11. Bomanji JB, Costa DC, Ell PJ (2001) Clinical role of positron emission tomography in oncology. Lancet Oncol 2:157–164

    Article  CAS  PubMed  Google Scholar 

  12. Teillaud JL (2005) Engineering of monoclonal antibodies and antibody-based fusion proteins: successes and challenges. Expert Opin Biol Ther 5(Suppl 1):S15–S27

    Article  CAS  PubMed  Google Scholar 

  13. Dillman RO (2011) Cancer immunotherapy. Cancer Biother Radiopharm 26:1–64

    Article  CAS  PubMed  Google Scholar 

  14. Barbet J, Chatal JF, Kraeber-Bodéré F (2009) Les anticorps radiomarqués pour le traitement des cancers. Med Sci (Paris) 25:1039–1045

    Article  Google Scholar 

  15. Cheson BD (2003) Radioimmunotherapy of non-Hodgkin lymphomas. Blood 101:391–398

    Article  CAS  PubMed  Google Scholar 

  16. Haddad F, Ferrer L, Guertin A et al (2008) ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Eur J Nucl Med Mol Imaging 35:1377–1387

    Article  PubMed  Google Scholar 

  17. Eckelman WC, Paik CH, Reba RC (1980) Radiolabeling of antibodies. Cancer Res 40:3036–3042

    CAS  PubMed  Google Scholar 

  18. Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bolton AE, Hunter WM (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J 133:529–539

    CAS  PubMed  Google Scholar 

  20. Yordanov AT, Garmestani K, Zhang M et al (2001) Preparation and in vivo evaluation of linkers for 211At labeling of humanized anti-Tac. Nucl Med Biol 28:845–856

    Article  CAS  PubMed  Google Scholar 

  21. Press OW, Leonard JP, Coiffier B, Levy R, Timmerman J (2001) Immunotherapy of Non-Hodgkin’s lymphomas. Hematology Am Soc Hematol Educ Program 2001:221–240

    Google Scholar 

  22. Buchsbaum DJ, Wahl RL, Normolle DP, Kaminski MS (1992) Therapy with unlabeled and 131I-labeled pan-B-cell monoclonal antibodies in nude mice bearing Raji Burkitt’s lymphoma xenografts. Cancer Res 52:6476–6481

    CAS  PubMed  Google Scholar 

  23. Kaminski MS, Estes J, Zasadny KR et al (2000) Radioimmunotherapy with iodine (131I) tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96:1259–1266

    CAS  PubMed  Google Scholar 

  24. Cheung MC, Maceachern JA, Haynes AE et al (2009) I-Tositumomab in lymphoma. Curr Oncol 16:32–47

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Press OW, Eary JF, Gooley T et al (2000) A phase I/II trial of iodine-131-tositumomab (anti-CD20), etoposide, cyclophosphamide, and autologous stem cell transplantation for relapsed B-cell lymphomas. Blood 96:2934–2942

    CAS  PubMed  Google Scholar 

  26. Maloney DG, Grillo-López AJ, White CA et al (1997) IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195

    CAS  PubMed  Google Scholar 

  27. Wiseman GA, White CA, Stabin M et al (2000) Phase I/II 90Y-Zevalin (yttrium-90 ibritumomab tiuxetan, IDEC-Y2B8) radioimmunotherapy dosimetry results in relapsed or refractory non-Hodgkin’s lymphoma. Eur J Nucl Med 27:766–777

    Article  CAS  PubMed  Google Scholar 

  28. Brechbiel MW, Gansow OA (1991) Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. Bioconjug Chem 2:187–194

    Article  CAS  PubMed  Google Scholar 

  29. Deshpande SV, DeNardo SJ, Kukis DL et al (1990) Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med 31:473–479

    CAS  PubMed  Google Scholar 

  30. Witzig TE, Gordon LI, Cabanillas F et al (2002) Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol 20:2453–2463

    Article  CAS  PubMed  Google Scholar 

  31. Gordon LI, Witzig T, Molina A et al (2004) Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma 5:98–101

    Article  CAS  PubMed  Google Scholar 

  32. Witzig TE, Flinn IW, Gordon LI et al (2002) Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol 20:3262–3269

    Article  CAS  PubMed  Google Scholar 

  33. Morschhauser F, Radford J, Van Hoof A et al (2008) Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J Clin Oncol 26:5156–5164

    Article  CAS  PubMed  Google Scholar 

  34. Mason DY, Stein H, Gerdes J et al (1987) Value of monoclonal anti-CD22 (p135) antibodies for the detection of normal and neoplastic B lymphoid cells. Blood 69:836–840

    CAS  PubMed  Google Scholar 

  35. Goldenberg DM (2006) Epratuzumab in the therapy of oncological and immunological diseases. Expert Rev Anticancer Ther 6:1341–1353

    Article  CAS  PubMed  Google Scholar 

  36. Govindan SV, Shih LB, Goldenberg DM et al (1998) 90Yttrium-labeled complementarity-determining-region-grafted monoclonal antibodies for radioimmunotherapy: radiolabeling and animal biodistribution studies. Bioconjug Chem 9:773–782

    Article  CAS  PubMed  Google Scholar 

  37. Sharkey RM, Brenner A, Burton J et al (2003) Radioimmunotherapy of non-Hodgkin’s lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-Epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med 44:2000–2018

    CAS  PubMed  Google Scholar 

  38. Morschhauser F, Kraeber-Bodéré F, Wegener WA et al (2010) High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J Clin Oncol 28:3709–3716

    Article  CAS  PubMed  Google Scholar 

  39. Bakker WH, Breeman WA et al (2006) Practical aspects of peptide receptor radionuclide therapy with (177Lu)(DOTA0, Tyr3)octreotate. Q J Nucl Med Mol Imaging 50:265–271

    CAS  PubMed  Google Scholar 

  40. Bander NH, Nanus DM, Milowsky MI et al (2003) Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol 30:667–676

    Article  CAS  PubMed  Google Scholar 

  41. Tagawa ST, Beltran H, Vallabhajosula S et al (2010) Anti-prostate-specific membrane antigen-based radioimmunotherapy for prostate cancer. Cancer 116(Suppl 4):1075–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Liersch T, Meller J, Bittrich M et al (2007) Update of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol 14:2577–2590

    Article  PubMed  Google Scholar 

  43. Sgouros G (2008) Alpha-particles for targeted therapy. Adv Drug Deliv Rev 60:1402–1406

    Article  CAS  PubMed  Google Scholar 

  44. Nilsson S, Larsen RH, Fossa SD et al (2005) First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res 11:4451–4459

    Article  CAS  PubMed  Google Scholar 

  45. Beck R, Seidl C, Pfost B et al (2007) 213Bi-radioimmunotherapy defeats early-stage disseminated gastric cancer in nude mice. Cancer Sci 98:1215–1222

    Article  CAS  PubMed  Google Scholar 

  46. Andersson H, Cederkrantz E, Bäck T et al (2009) Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2—a phase I study. J Nucl Med 50:1153–1160

    Article  CAS  PubMed  Google Scholar 

  47. Jurcic JG (2005) Immunotherapy for acute myeloid leukemia. Curr Oncol Rep 7:339–346

    Article  CAS  PubMed  Google Scholar 

  48. Chatal JF, Davodeau F, Chérel M, Barbet J (2009) Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J Cancer Res Ther 5(Suppl 1):S36–S40

    Article  CAS  PubMed  Google Scholar 

  49. Zalutsky MR, Reardon DA, Pozzi OR et al (2007) Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl Med Biol 34:779–785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Jain RK (2001) Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 46:149–168

    Article  CAS  PubMed  Google Scholar 

  51. Jain M, Venkatraman G, Batra SK (2007) Optimization of radioimmunotherapy of solid tumors: biological impediments and their modulation. Clin Cancer Res 13:1374–1382

    Article  CAS  PubMed  Google Scholar 

  52. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF (2006) Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 24:823–834

    Article  CAS  PubMed  Google Scholar 

  53. Le Doussal JM, Gruaz-Guyon A, Martin M et al (1990) Targeting of indium 111-labeled bivalent hapten to human melanoma mediated by bispecific monoclonal antibody conjugates: imaging of tumors hosted in nude mice. Cancer Res 50:3445–3452

    PubMed  Google Scholar 

  54. Barbet J., Campion L., Kraeber-Bodéré F., Chatal J.F.; GTE Study Group (2005) Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab 90:6077–6084

    Article  Google Scholar 

  55. Chatal JF, Campion L, Kraeber-Bodéré F et al (2006) Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol 24:1705–1711

    Article  CAS  PubMed  Google Scholar 

  56. Goldenberg DM, Rossi EA, Sharkey RM, McBride WJ, Chang CH (2008) Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 49:158–163

    Article  CAS  PubMed  Google Scholar 

  57. Sharkey RM, McBride WJ, Karacay H et al (2003) A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res 63:354–363

    CAS  PubMed  Google Scholar 

  58. Lopci E, Chiti A, Castellani MR et al (2011) Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131I and 86Y/90Y antibodies. Eur J Nucl Med Mol Imaging 38(Suppl 1):S28–S40

    Article  PubMed  Google Scholar 

  59. Börjesson PK, Jauw YW, de Bree R et al (2009) Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. J Nucl Med 50:1828–1836

    Article  PubMed  Google Scholar 

  60. Divgi CR, Pandit-Taskar N, Jungbluth AA et al (2007) Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 8:304–310

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Barbet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Barbet, J. et al. (2012). Radiolabeled Antibodies for Cancer Imaging and Therapy. In: Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 907. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-974-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-974-7_38

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-973-0

  • Online ISBN: 978-1-61779-974-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics