Skip to main content
Log in

The use of protein-based radiocolloids in sentinel node localisation

  • Review Article
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Although lymphoscintigraphy has been part of nuclear medicine since the earliest days, the scintigraphic sentinel node procedure is only about 20 years old. During that time, it has gradually become the standard of care in an increasing range of cancers. Despite sentinel node procedures being carried out around the world, there is no consensus on the optimal properties or composition of the radiotracer, with the prime determinant of choice being geography: filtered sulphide colloid being used in the United States, antimony sulphide colloid in Australia and Canada, and protein-based radiocolloids in Europe. Ideal properties of a 99mTc-labelled protein colloid for sentinel node localisation include rapid transit from the injection depot to the sentinel node and prolonged retention in the node. The agents in clinical use offer a balance between these two conflicting properties. This review assesses the available evidence on the role of colloidal particle size on efficacy of sentinel node localisation. It has been suggested that the optimal particle size is 100–200 nm, but most of the radiocolloids in clinical use are smaller than this. The amount of activity to be administered varies between types of cancer and as a function of time between injection and surgery. Another parameter upon which there is disagreement is the number of particles administered. Traditionally the sentinel node procedure has been performed with separate injections of radiocolloid and blue dye (often separated in time), as the combination of two means of detection (radioactivity and visual) has better sensitivity than either modality alone. Recently, convenient methods have been developed to attach a fluorescent label to colloidal protein, such that the radioactivity and optical signal come from the same molecule given at a single injection time. Preliminary results have been promising and agents with improved properties are being developed. Finally, we have recently seen the introduction of the first tracer specifically designed for sentinel node localisation, the non-colloidal macromolecule tilmanocept. It remains to be seen where its role will be in sentinel node localisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gould EA, Winship T, Philbin PH, Kerr HH (1960) Observations on a “sentinel node” in cancer of the parotid. Cancer 13:77–78

    Article  CAS  PubMed  Google Scholar 

  2. Cabanas RM (1977) An approach for the treatment of penile carcinoma. Cancer 39:456–466

    Article  CAS  PubMed  Google Scholar 

  3. Uren RF, Howman-Giles RB, Shaw HM, Thompson JF, McCarthy WH (1993) Lymphoscintigraphy in high-risk melanoma of the trunk: predicting draining node groups, defining lymphatic channels and locating the sentinel node. J Nucl Med 34:1435–1440

    CAS  PubMed  Google Scholar 

  4. Buscombe J, Paganelli G, Burak ZE, Waddington W, Maublant J, Prats E, Palmedo H, Schillaci O, Maffioli L, Lassmann M, Chiesa C, Bombardieri E, Chiti A (2007) Sentinel node in breast cancer procedural guidelines. Eur J Nucl Med Mol Imaging 34:2154–2159

    Article  PubMed  Google Scholar 

  5. Chakera AH, Hesse B, Burak Z, Ballinger JR, Britten A, Caracò C, Cochran AJ, Cook MG, Drzewiecki KT, Essner R, Even-Sapir E, Eggermont AM, Stopar TG, Ingvar C, Mihm MC, McCarthy SW, Mozzillo N, Nieweg OE, Scolyer RA, Starz H, Thompson JF, Trifirò G, Viale G, Vidal Sicart S, Uren R, Waddington W, Chiti A, Spatz A, Testori A (2009) EANM-EORTC general recommendations for sentinel node diagnostics in melanoma. Eur J Nucl Med Mol Imaging 36:1713–1742

    Article  CAS  PubMed  Google Scholar 

  6. Alkureishi LW, Burak Z, Alvarez JA, Ballinger J, Bilde A, Britten AJ, Calabrese L, Chiesa C, Chiti A, de Bree R, Gray HW, Hunter K, Kovacs AF, Lassmann M, Leemans CR, Mamelle G, McGurk M, Mortensen J, Poli T, Shoaib T, Sloan P, Sorensen JA, Stoeckli SJ, Thomsen JB, Trifiro G, Werner J, Ross GL (2009) Joint practice guidelines for radionuclide lymphoscintigraphy for sentinel node localization in oral/oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 36:1915–1936

    Article  PubMed Central  PubMed  Google Scholar 

  7. Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, Kunikowska J, Leidenius M, Moncayo VM, Uren RF, Oyen WJ, Valdés Olmos RA, Vidal Sicart S (2013) The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 40:1932–1947

    Article  CAS  PubMed  Google Scholar 

  8. Giammarile F, Bozkurt MF, Cibula D, Pahisa J, Oyen WJ, Paredes P, Valdes Olmos RA, Vidal Sicart S (2014) The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur J Nucl Med Mol Imaging 41:1463–1477

    Article  PubMed  Google Scholar 

  9. Mariani G, Moresco L, Viale G, Villa G, Bagnasco M, Canavese G, Buscombe J, Strauss HW, Paganelli G (2001) Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med 42:1198–1215

    CAS  PubMed  Google Scholar 

  10. Mariani G, Erba P, Villa G, Gipponi M, Manca G, Boni G, Buffoni F, Castagnola F, Paganelli G, Strauss HW (2004) Lymphoscintigraphic and intraoperative detection of the sentinel lymph node in breast cancer patients: the nuclear medicine perspective. J Surg Oncol 85:112–122

    Article  PubMed  Google Scholar 

  11. Mariani G, Erba P, Manca G, Villa G, Gipponi M, Boni G, Buffoni F, Suriano S, Castagnola F, Bartolomei M, Strauss HW (2004) Radioguided sentinel lymph node biopsy in patients with malignant cutaneous melanoma: the nuclear medicine contribution. J Surg Oncol 85:141–151

    Article  PubMed  Google Scholar 

  12. Pillai MRA (2008) Technetium-99m radiopharmaceuticals: manufacture of kits. Technical Report Series No 466. International Atomic Energy Agency, Vienna

    Google Scholar 

  13. Millar AM, O’Brien LM, Beattie LA, Craig F, McDade J (2007) Validation of an extended shelf-life for 99mTc albumin nanocolloid injection. Nucl Med Commun 28:A15

    Article  Google Scholar 

  14. De Cicco C, Cremonesi M, Luini A, Bartolomei M, Grana C, Prisco G, Galimberti V, Calza P, Viale G, Veronesi U, Paganelli G (1998) Lymphoscintigraphy and radioguided biopsy of the sentinel axillary node in breast cancer. J Nucl Med 39:2080–2084

    PubMed  Google Scholar 

  15. Bergqvist L, Strand SE, Persson BR (1983) Particle sizing and biokinetics of interstitial lymphoscintigraphic agents. Semin Nucl Med 13:9–19

    Article  CAS  PubMed  Google Scholar 

  16. Bergqvist L, Strand SE (1989) Autocorrelation spectroscopy for particle sizing and stability tests of radiolabelled colloids. Eur J Nucl Med 15:641–645

    Article  CAS  PubMed  Google Scholar 

  17. Gommans GM, van Dongen A, van der Schors TG, Gommans E, Visser JF, Clarijs WW, de Waard JW, van de Bos J, Boer RO (2001) Further optimisation of 99mTc-Nanocoll sentinel node localisation in carcinoma of the breast by improved labelling. Eur J Nucl Med 28:1450–1455

    Article  CAS  PubMed  Google Scholar 

  18. Jimenez IR, Roca M, Vega E, García ML, Benitez A, Bajén M, Martín-Comín J (2008) Particle sizes of colloids to be used in sentinel lymph node radiolocalization. Nucl Med Commun 29:166–172

    Article  PubMed  Google Scholar 

  19. Hung JC, Wiseman GA, Wahner HW, Mullan BP, Taggart TR, Dunn WL (1995) Filtered technetium-99m-sulfur colloid evaluated for lymphoscintigraphy. J Nucl Med 36:1895–1901

    CAS  PubMed  Google Scholar 

  20. Tokin CA, Cope FO, Metz WL, Blue MS, Potter BM, Abbruzzese BC, Hartman RD, Joy MT, King DW, Christman LA, Vera DR, Wallace AM (2012) The efficacy of Tilmanocept in sentinel lymph mode mapping and identification in breast cancer patients: a comparative review and meta-analysis of the 99mTc-labeled nanocolloid human serum albumin standard of care. Clin Exp Metastasis 29:681–686

    Article  CAS  PubMed  Google Scholar 

  21. European Medicines Agency (2013) Questions and answers on Nanotop and associated names (human albumin colloidal particles, kit for radiopharmaceutical preparation). EMA/795874/2013. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Nanotop_and_associated_names/WC500158702.pdf

  22. Glass EC, Essner R, Morton DL (1998) Kinetics of three lymphoscintigraphic agents in patients with cutaneous melanoma. J Nucl Med 39:1185–1190

    CAS  PubMed  Google Scholar 

  23. Leidenius MH, Leppänen EA, Krogerus LA, Smitten KA (2004) The impact of radiopharmaceutical particle size on the visualization and identification of sentinel nodes in breast cancer. Nucl Med Commun 25:233–238

    Article  PubMed  Google Scholar 

  24. Rzyman W, Hagen OM, Dziadziuszko R, Kobierska-Gulida G, Karmolinski A, Lothe IM, Babovic A, Murawski M, Paleczka W, Jastrzebski T, Kopacz A, Jassem J, Lass P, Skokowski J (2006) Intraoperative, radio-guided sentinel lymph node mapping in 110 nonsmall cell lung cancer patients. Ann Thorac Surg 82:237–242

    Article  PubMed  Google Scholar 

  25. Zámbó K, Schmidt E, Hartmann T, Kornya L, Dehghani B, Tinneberg HR, Bódis J (2002) Preliminary experiences with sentinel lymph node detection in cases of vulvar malignancy. Eur J Nucl Med Mol Imaging 29:1198–1200

    Article  PubMed  Google Scholar 

  26. Mirzaei S, Rodrigues M, Hoffmann B, Knoll P, Riegler-Keil M, Kreuzer W, Salzer H, Köhn H, Polyák A, Jánoki GA (2003) Sentinel lymph node detection with large human serum albumin colloid particles in breast cancer. Eur J Nucl Med Mol Imaging 30:874–878

    Article  CAS  PubMed  Google Scholar 

  27. Višnjić M, Kovačević P, Vlajković M, Djordjević L, Djordjević G (2005) Significance of sentinel lymph node biopsy labelled by technetium Tc99m and patent blue in treatment of patients with the breast cancer. Facta Universitatis Ser Med Biol 12:76–80

    Google Scholar 

  28. Kraft O, Sevcík L, Klát J, Koliba P, Curík R, Kríozvá H (2006) Detection of sentinel lymph nodes in cervical cancer. A comparison of two protocols. Nucl Med Rev Cent East Eur 9:65–68

    PubMed  Google Scholar 

  29. Duchaj B, Chvalny P, Vesely J, Makaiova I, Durdik S, Straka V, Palaj J, Procka V, Aksamitova K, Skraskova S, Banki P, Kovacova S, Galbavy S (2010) Radionavigated detection of sentinel nodes in breast carcinoma—first experiences of our department. Bratisl Lek Listy 111:33–37

    CAS  PubMed  Google Scholar 

  30. Iida S, Imai K, Matsuda S, Itano O, Hatakeyama M, Sakamoto S, Kokuryo D, Okabayashi K, Endo T, Ishii Y, Hasegawa H, Aoki I, Handa H, Kitagawa Y (2013) In vivo identification of sentinel lymph nodes using MRI and size-controlled and monodispersed magnetite nanoparticles. J Magn Reson Imaging 38:1346–1355

    Article  PubMed  Google Scholar 

  31. Kjellman P, In’t Zandt R, Fredriksson S, Strand SE (2014) Optimizing retention of multimodal imaging nanostructures in sentinel lymph nodes by nanoscale size tailoring. Nanomedicine 10:1089–1095

    Article  CAS  PubMed  Google Scholar 

  32. Scott GB, Williams HS, Marriott PM (1967) The phagocytosis of colloidal particles of different sizes. Br J Exp Pathol 48:411–416

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bergqvist L, Sundberg R, Rydén S, Strand SE (1987) The “critical colloid dose” in studies of reticuloendothelial function. J Nucl Med 28:1424–1429

    CAS  PubMed  Google Scholar 

  34. Ballinger JR (2004) Re: effect of increased 99mTc/99Tc ratios on count rates in sentinel node procedures: a randomised study. Eur J Nucl Med Mol Imaging 31:306

    Article  PubMed  Google Scholar 

  35. Krynyckyi BR, Zhang ZY, Kim CK, Lipszyc H, Mosci K, Machac J (2002) Effect of high specific-activity sulfur colloid preparations on sentinel node count rates. Clin Nucl Med 27:92–95

    Article  PubMed  Google Scholar 

  36. Gommans GM, van der Zant FM, van der Schors TG, van Dongen A, Teule GJ, Clarijs WW, Langenhorst BL, de Waard JW (2003) Effect of increased 99mTc/99Tc ratios on count rates in sentinel node procedures: a randomised study. Eur J Nucl Med Mol Imaging 30:1231–1235

    Article  CAS  PubMed  Google Scholar 

  37. Lamson ML, Kirschner AS, Hotte CE, Lipsitz EL, Ice RD (1975) Generator-produced 99mTcO4 : carrier free? J Nucl Med 16:639–641

    CAS  PubMed  Google Scholar 

  38. Gommans GM, Gommans E, van der Zant FM, Teule GJ, van der Schors TG, de Waard JW (2009) 99mTc Nanocoll: a radiopharmaceutical for sentinel node localisation in breast cancer—in vitro and in vivo results. Appl Radiat Isot 67:1550–1558

    Article  CAS  PubMed  Google Scholar 

  39. Valdés Olmos RA, Tanis PJ, Hoefnagel CA, Nieweg OE, Muller SH, Rutgers EJ, Kooi ML, Kroon BB (2001) Improved sentinel node visualization in breast cancer by optimizing the colloid particle concentration and tracer dosage. Nucl Med Commun 22:579–586

    Article  PubMed  Google Scholar 

  40. Bourgeois P (2007) Scintigraphic investigations of the lymphatic system: the influence of injected volume and quantity of labeled colloidal tracer. J Nucl Med 48:693–695

    Article  PubMed  Google Scholar 

  41. Mitterhauser M, Wadsak W, Mien LK, Eidherr H, Roka S, Zettinig G, Angelberger P, Viernstein H, Kletter K, Dudczak R (2003) The labelling of Nanocoll with [111In] for dual-isotope scanning. Appl Radiat Isot 59:337–342

    Article  CAS  PubMed  Google Scholar 

  42. Fowler JC, Solanki CK, Barber RW, Ballinger JR, Peters AM (2007) Dual-isotope lymphoscintigraphy using albumin nanocolloid differentially labeled with 111In and 99mTc. Acta Oncol 46:105–110

    Article  CAS  PubMed  Google Scholar 

  43. Heuveling DA, Visser GW, Baclayon M, Roos WH, Wuite GJ, Hoekstra OS, Leemans CR, de Bree R, van Dongen GA (2011) 89Zr-nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results. J Nucl Med 52:1580–1584

    Article  CAS  PubMed  Google Scholar 

  44. Heuveling DA, van Schie A, Vugts DJ, Hendrikse NH, Yaqub M, Hoekstra OS, Karagozoglu KH, Leemans CR, van Dongen GA, de Bree R (2013) Pilot study on the feasibility of PET/CT lymphoscintigraphy with 89Zr-nanocolloidal albumin for sentinel node identification in oral cancer patients. J Nucl Med 54:585–589

    Article  CAS  PubMed  Google Scholar 

  45. Ellner SJ, Hoh CK, Vera DR, Darrah DD, Schulteis G, Wallace AM (2003) Dose-dependent biodistribution of [99mTc]DTPA-mannosyl-dextran for breast cancer sentinel lymph node mapping. Nucl Med Biol 30:805–810

    Article  CAS  PubMed  Google Scholar 

  46. Sondak VK, King DW, Zager JS, Schneebaum S, Kim J, Leong SP, Faries MB, Averbook BJ, Martinez SR, Puleo CA, Messina JL, Christman L, Wallace AM (2013) Combined analysis of phase III trials evaluating [99mTc]tilmanocept and vital blue dye for identification of sentinel lymph nodes in clinically node-negative cutaneous melanoma. Ann Surg Oncol 20:680–688

    Article  PubMed Central  PubMed  Google Scholar 

  47. Wallace AM, Hoh CK, Limmer KK, Darrah DD, Schulteis G, Vera DR (2009) Sentinel lymph node accumulation of Lymphoseek and Tc-99m-sulfur colloid using a “2-day” protocol. Nucl Med Biol 36:687–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Baker JL, Pu M, Tokin CA, Hoh CK, Vera DR, Messer K, Wallace AM (2014) Comparison of [99mTc]tilmanocept and filtered [99mTc]sulfur colloid for identification of SLNs in breast cancer patients. Ann Surg Oncol. doi:10.1245/s10434-014-3892-2

    PubMed Central  Google Scholar 

  49. Buckle T, van Leeuwen AC, Chin PT, Janssen H, Muller SH, Jonkers J, van Leeuwen FW (2010) A self-assembled multimodal complex for combined pre- and intraoperative imaging of the sentinel lymph node. Nanotechnology 21:355101

    Article  PubMed  Google Scholar 

  50. van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA, van Leeuwen FW (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60:826–833

    Article  PubMed  Google Scholar 

  51. Brouwer OR, Klop WM, Buckle T, Vermeeren L, van den Brekel MW, Balm AJ, Nieweg OE, Valdés Olmos RA, van Leeuwen FW (2012) Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann Surg Oncol 19:1988–1994

    Article  PubMed Central  PubMed  Google Scholar 

  52. van den Berg NS, Brouwer OR, Klop WM, Karakullukcu B, Zuur CL, Tan IB, Balm AJ, van den Brekel MW, Valdés Olmos RA, van Leeuwen FW (2012) Concomitant radio- and fluorescence-guided sentinel lymph node biopsy in squamous cell carcinoma of the oral cavity using ICG-99mTc-nanocolloid. Eur J Nucl Med Mol Imaging 39:1128–1136

    Article  CAS  PubMed  Google Scholar 

  53. Brouwer OR, Buckle T, Vermeeren L, Klop WM, Balm AJ, van der Poel HG, van Rhijn BW, Horenblas S, Nieweg OE, van Leeuwen FW, Valdés Olmos RA (2012) Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med 53:1034–1040

    Article  CAS  PubMed  Google Scholar 

  54. Schaafsma BE, Verbeek FP, Rietbergen DD, van der Hiel B, van der Vorst JR, Liefers GJ, Frangioni JV, van de Velde CJ, van Leeuwen FW, Vahrmeijer AL (2013) Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer. Br J Surg 100:1037–1044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Emerson DK, Limmer KK, Hall DJ, Han SH, Eckelman WC, Kane CJ, Wallace AM, Vera DR (2012) A receptor-targeted fluorescent radiopharmaceutical for multireporter sentinel lymph node imaging. Radiology 265:186–193

    Article  PubMed Central  PubMed  Google Scholar 

  56. Hosseini A, Baker JL, Tokin CA, Qin Z, Hall DJ, Stupak DG, Hayashi T, Wallace AM, Vera DR (2014) Fluorescent-tilmanocept for tumor margin analysis in the mouse model. J Surg Res 190:528–534

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares that there is no conflict of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Ballinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballinger, J.R. The use of protein-based radiocolloids in sentinel node localisation. Clin Transl Imaging 3, 179–186 (2015). https://doi.org/10.1007/s40336-014-0097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-014-0097-4

Keywords

Navigation