Skip to main content

General Concepts on Radioguided Sentinel Lymph Node Biopsy: Preoperative Imaging, Intraoperative Gamma Probe Guidance, Intraoperative Imaging, Multimodality Imaging

  • Chapter
  • First Online:
Atlas of Lymphoscintigraphy and Sentinel Node Mapping

Abstract

The sentinel lymph node biopsy (SLNB) is a diagnostic staging procedure that is applied in a variety of tumor types and aims to determine the tumor status of locoregional lymph nodes. The radiopharmaceuticals labeled with 99mTc most frequently employed for sentinel lymph node mapping are colloids (99mTc-sulfur colloid, 99mTc-albumin nanocolloid) and more recently receptor-based tracers (9mTc-tilmanocept); hybrid tracers combining the radioactive signature with a fluorescence signal have also been developed, such as 99mTc-nanocolloid conjugated with indocyanine green (ICG). Radiopharmaceutical administration is performed by tumoral or peritumoral interstitial injection. Lymphoscintigraphy is a mandatory preoperative step of the entire SLNB procedure allowing a skin marking as a general guide for the surgical incision. Hybrid SPECT/CT images are highly useful, especially in case of complex anatomical regions and/or in case of unusual lymphatic drainage patterns. The intraoperative exploration of the surgical field is performed with the widely validated procedure based on the so-called handheld gamma probe. While this instrumentation produces a numerical readout and an acoustic signal proportional to radioactivity accumulation as a guide in the surgical field, the recently developed portable gamma cameras enable real-time scintigraphic imaging of the surgical field, mostly with the purpose of assessing completeness of the SLNB procedure. All these instrumentations allow selective identification of the sentinel lymph node(s) to be removed by the surgeon and analyzed by the pathologist. Histopathology of the sentinel lymph nodes(s) so identified and resected can distinguish macrometastases (>2 mm in size), micrometastases (between 0.2 and 2 mm), isolating tumor cells (malignant cell clusters <0.2 mm), or positive molecular findings. The interactions between technologies and different medical disciplines permit to continuously refine the methodology and to improve the outcomes of radioguided surgery of the SLNB procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NCCN clinical practice guidelines in oncology (NCCN guidelines®) breast cancer, version 3.2019. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.

  2. NCCN clinical practice guidelines in oncology (NCCN guidelines®) cutaneous melanoma, version 2.2019. https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf.

  3. Giuliano AE, Hunt KK, Ballman KV, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305:569–75.

    Google Scholar 

  4. Giammarile F, Vidal-Sicart S, Orsini F, et al. In: Volterrani D, Erba PA, Carrió I, Strauss HW, Mariani G, editors. Nuclear medicine textbook—methodology and clinical applications. Basel: Springer Nature; 2019. p. 351–90.

    Google Scholar 

  5. Galimberti V, Cole BF, Viale G, et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol. 2018;19:1385–93.

    Google Scholar 

  6. Giuliano AE, Han SH. Local and regional control in breast cancer: role of sentinel node biopsy. Adv Surg. 2011;45:101–16.

    Article  Google Scholar 

  7. Orsini F, Puta E, Mariani G. Single-photon emitting radiopharmaceuticals. In: Volterrani D, Erba PA, Carrió I, Strauss HW, Mariani G, editors. Nuclear medicine texbook—methodology and clinical applications. Basel: Springer Nature; 2019. p. 21–56.

    Chapter  Google Scholar 

  8. Vidal-Sicart S, Vera D, Valdés Olmos RA. Next generation of radiotracers for sentinel lymph node biopsy: what is still necessary to establish new imaging paradigms? Rev Esp Med Nucl Imagen Mol. 2018;37:373–9.

    CAS  PubMed  Google Scholar 

  9. KleinJan GH, van Werkhoven E, van den Berg NS, et al. The best of both worlds: a hybrid approach for optimal pre- and intraoperative identification of sentinel lymph nodes. Eur J Nucl Med Mol Imaging. 2018;45:1915–25.

    Google Scholar 

  10. Brouwer OR, Buckle T, Vermeeren L, et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53:1034–40.

    Google Scholar 

  11. Goyal A, Newcombe RG, Mansel RE, et al. Role of routine preoperative lymphoscintigraphy in sentinel node biopsy for breast cancer. Eur J Cancer. 2005;41:238–43.

    Google Scholar 

  12. Even-Sapir E, Lerman H, Lievshitz G, et al. Lymphoscintigraphy for sentinel node mapping using a hybrid SPECT/CT system. J Nucl Med. 2003;44:1413–20.

    Google Scholar 

  13. Lerman H, Metser U, Lievshitz G, et al. Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of SPECT/CT. Eur J Nucl Med Mol Imaging. 2006;33:329–37.

    Google Scholar 

  14. Lerman H, Lievshitz G, Zak O, et al. Improved sentinel node identification by SPECT/CT in overweight patients with breast cancer. J Nucl Med. 2007;48:201–6.

    Google Scholar 

  15. Zanzonico P, Heller S. The intraoperative gamma probe: basic principles and choices available. Semin Nucl Med. 2000;30:33–48.

    Article  CAS  Google Scholar 

  16. Mathelin CE, Guyonnet JL. Scintillation crystal or semiconductor gamma-probes: an open debate. J Nucl Med. 2006;47:373.

    PubMed  Google Scholar 

  17. Meller B, Sommer K, Gerl J, et al. High energy probe for detecting lymph node metastases with 18F-FDG in patients with head and neck cancer. Nuklearmedizin. 2006;45:153–9.

    Article  CAS  Google Scholar 

  18. Curtet C, Carlier T, Mirallié E, et al. Prospective comparison of two gamma probes for intraoperative detection of 18F-FDG: in vitro assessment and clinical evaluation in differentiated thyroid cancer patients with iodine-negative recurrence. Eur J Nucl Med Mol Imaging. 2007;34:1556–62.

    Google Scholar 

  19. Schneebaum S, Essner R, Even-Sapir E. Positron-sensitive probes. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery—a comprehensive team approach. New York: Springer; 2008. p. 23–8.

    Chapter  Google Scholar 

  20. Valdés Olmos RA, Vidal-Sicart S, Manca G, et al. Advances in radioguided surgery. Q J Nucl Med Mol Imaging. 2017;61:247–70.

    Google Scholar 

  21. Rauscher I, Horn T, Gschwend JE, et al. Novel technology of molecular radio-guidance for lymph node dissection in recurrent prostate cancer by PSMA-ligands. World J Urol. 2018;36:603–8.

    Google Scholar 

  22. Van Oosterom MN, Rietbergen DDD, Welling MM, et al. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices. 2019;16:711–34.

    Google Scholar 

  23. Vermeeren L, van der Ploeg IM, Valdés Olmos RA, et al. SPECT/CT for preoperative sentinel node localization. J Surg Oncol. 2010;101:184–90.

    Google Scholar 

  24. Israel O, Pellet O, Biassoni L, et al. Two decades of SPECT/CT—the coming of age of a technology. An updated review of the literature evidence. Eur J Nucl Med Mol Imaging. 2019;46:1990–2012.

    Google Scholar 

  25. Kobayashi K, Ramirez PT, Kim EE, et al. Sentinel node mapping in vulvovaginal melanoma using SPECT/CT lymphoscintigraphy. Clin Nucl Med. 2009;34:859–61.

    Google Scholar 

  26. Leijte JA, van der Ploeg IM, Valdés Olmos RA, et al. Visualization of tumor blockage and rerouting of lymphatic drainage in penile cancer patients by use of SPECT/CT. J Nucl Med. 2009;50:364–7.

    Google Scholar 

  27. van der Ploeg IM, Valdés Olmos RA, Kroon BB, et al. The yield of SPECT/CT for anatomical lymphatic mapping in patients with melanoma. Ann Surg Oncol. 2009;16:1537–42.

    Google Scholar 

  28. Vermeeren L, Valdés Olmos RA, Meinhardt W, et al. Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma. J Nucl Med. 2009;50:865–70.

    Google Scholar 

  29. Pandit-Taskar N, Gemignani ML, Lyall A, et al. Single photon emission computed tomography SPECT-CT improves sentinel node detection and localization in cervical and uterine malignancy. Gynecol Oncol. 2010;117:59–64.

    Google Scholar 

  30. Vermeeren L, Meinhardt W, Valdés Olmos RA. Prostatic lymphatic drainage with sentinel nodes at the ventral abdominal wall visualized with SPECT/CT: a case series. Clin Nucl Med. 2010;35:71–3.

    Article  Google Scholar 

  31. Vermeeren L, Valdés Olmos RA, Klop WM, et al. SPECT/CT for sentinel lymph node mapping in head and neck melanoma. Head Neck. 2011;33:1–6.

    Google Scholar 

  32. Giammarile F, Alazraki N, Aarsvold JN, et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging. 2013;40:1932–47.

    Google Scholar 

  33. Cox CE, Cox JM, Mariani G, et al. Sentinel lymph node biopsy in patients with breast cancer. In: Mariani G, Giuliano AE, Strauss HW, editors. Radioguided surgery—a comprehensive team approach. New York: Springer; 2008. p. 87–97.

    Google Scholar 

  34. Estourgie SH, Nieweg OE, Valdés Olmos RA, et al. Eight false negative sentinel lymph node procedures in breast cancer: what went wrong? Eur J Surg Oncol. 2003;29:336–40.

    Google Scholar 

  35. Serrano Vicente J, Infante de la Torre JR, Domínguez Grande ML, et al. Optimization of sentinel lymph node biopsy in breast cancer by intraoperative axillary palpation. Rev Esp Med Nucl. 2010;29:8–11.

    Google Scholar 

  36. Varghese P, Abdel-Rahman AT, Akberali S, et al. Methylene blue dye—a safe and effective alternative for sentinel lymph node localization. Breast J. 2008;14:61–7.

    Google Scholar 

  37. Rodier JF, Velten M, Wilt M, et al. Prospective multicentric randomized study comparing periareolar and peritumoral injection of radiotracer and blue dye for the detection of sentinel lymph node in breast sparing procedures: FRANSENODE trial. J Clin Oncol. 2007;25:3664–9.

    Google Scholar 

  38. Valdés Olmos RA, Vidal-Sicart S, Nieweg OE. SPECT-CT and real-time intraoperative imaging: new tools for sentinel node localization and radioguided surgery? Eur J Nucl Med Mol Imaging. 2009;36:1–5.

    Article  Google Scholar 

  39. Vermeeren L, Valdés Olmos RA, Meinhardt W, et al. Intraoperative radioguidance with a portable gamma camera: a novel technique for laparoscopic sentinel node localisation in urological malignancies. Eur J Nucl Med Mol Imaging. 2009;36:1029–36.

    Google Scholar 

  40. Hoffman EJ, Tornai MP, Janecek M, et al. Intra-operative probes and imaging probes. Eur J Nucl Med. 1999;26:913–35.

    Google Scholar 

  41. Mathelin C, Salvador S, Huss D, et al. Precise localization of sentinel lymph nodes and estimation of their depth using a prototype intraoperative mini gamma-camera in patients with breast cancer. J Nucl Med. 2007;48:623–9.

    Google Scholar 

  42. Scopinaro F, Tofani A, di Santo G, et al. High-resolution, hand-held camera for sentinel-node detection. Cancer Biother Radiopharm. 2008;23:43–52.

    Google Scholar 

  43. Zaknun JJ, Giammarile F, Valdés Olmos RA, et al. Changing paradigms in radioguided surgery and intraoperative imaging: the GOSTT concept. Eur J Nucl Med Mol Imaging. 2012;39:1–3.

    Google Scholar 

  44. Vermeeren L, Klop WM, van den Brekel MW, et al. Sentinel node detection in head and neck malignancies: innovations in radioguided surgery. J Oncol. 2009;2009:681746.

    Google Scholar 

  45. Duch J. Portable gamma cameras: the real value of an additional view in the operating theatre. Eur J Nucl Med Mol Imaging. 2011;38:633–5.

    Article  Google Scholar 

  46. Vidal-Sicart S, Paredes P, Zanón G, et al. Added value of intraoperative real-time imaging in searches for difficult-to-locate sentinel nodes. J Nucl Med. 2010;51:1219–25.

    Google Scholar 

  47. Leong SP, Wu M, Lu Y, et al. Intraoperative imaging with a portable gamma camera may reduce the false-negative rate for melanoma sentinel lymph node surgery. Ann Surg Oncol. 2018;25:3326–33.

    Google Scholar 

  48. Wendler T, Herrmann K, Schnelzer A, et al. First demonstration of 3-D lymphatic mapping in breast cancer using freehand SPECT. Eur J Nucl Med Mol Imaging. 2010;37:1452–61.

    Google Scholar 

  49. Rieger A, Saeckl J, Belloni B, et al. First experiences with navigated radio-guided surgery using freehand SPECT. Case Rep Oncol. 2011;4:420–5.

    Google Scholar 

  50. van der Poel HG, Buckle T, Brouwer OR, et al. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011;60:826–33.

    Google Scholar 

  51. Keereweer S, Kerrebijn JD, van Driel PB, et al. Optical image-guided surgery—where do we stand? Mol Imaging Biol. 2011;13:199–207.

    Google Scholar 

  52. Polom K, Murawa D, Rho YS, et al. Current trends and emerging future of indocyanine green usage in surgery and oncology: a literature review. Cancer. 2011;117:4812–22.

    Google Scholar 

  53. Namazov A, Volchok V, Liboff A, et al. Sentinel nodes detection with near-infrared imaging in gynecological cancer patients: ushering in an era of precision medicine. Isr Med Assoc J. 2019;21:390–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Orsini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orsini, F., Guidoccio, F., Vidal-Sicart, S., Valdés Olmos, R.A., Mariani, G. (2020). General Concepts on Radioguided Sentinel Lymph Node Biopsy: Preoperative Imaging, Intraoperative Gamma Probe Guidance, Intraoperative Imaging, Multimodality Imaging. In: Mariani, G., Vidal-Sicart, S., Valdés Olmos, R. (eds) Atlas of Lymphoscintigraphy and Sentinel Node Mapping. Springer, Cham. https://doi.org/10.1007/978-3-030-45296-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45296-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45295-7

  • Online ISBN: 978-3-030-45296-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics