Skip to main content
Log in

Analysis of exponentially varying viscosity and thermal conductivity on a tangent hyperbolic fluid

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

We present an analysis of the significance of exponentially varying viscosity and thermal conductivity in the magnetohydrodynamic flow of a tangent hyperbolic fluid. The study assumes the combined impact of viscous dissipation, chemical reaction and variable transport properties on the flow. The model equations are reduced to a system of parabolic partial differential equations using a non-similar solution. We solve the coupled nonlinear partial differential equations using the multi-domain bivariate spectral quasi-linearisation method. Among other findings, the study shows that varying the viscosity reduces fluid flow resistance and this leads to an increase in the fluid velocity while the temperature and species concentration profiles decrease. The flow heat and mass transfer rates increase with the magnetic variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akbar, N.S., Khan, Z.H.: Rheological analysis of cnt suspended nanofluid with variable viscosity: numerical solution. Commun. Theor. Phys. 67(6), 681 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bellman, R.E., Kalaba, R.E.: Quasilinearization and Nonlinear Boundary-value Problems. Rand Corporation, Santa Monica (1965)

    MATH  Google Scholar 

  3. Bhattacharyya, K., Mukhopadhyay, S., Layek, G.: Mhd boundary layer slip flow and heat transfer over a flat plate. Chin. Phys. Lett. 28(2), 024701 (2011)

    Article  Google Scholar 

  4. Chamkha, A.J., Mujtaba, M., Quadri, A., Issa, C.: Thermal radiation effects on mhd forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink. Heat Mass Transf. 39(4), 305–312 (2003)

    Article  Google Scholar 

  5. Gaffar, S.A., Prasad, V.R., Reddy, E.K.: Computational study of mhd free convection flow of non-newtonian tangent hyperbolic fluid from a vertical surface in porous media with hall/ionslip currents and ohmic dissipation. Int. J. Appl. Comput. Math. 3(2), 859–890 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gaffar, S.A., Prasad, V.R., Reddy, S.K., Beg, O.A.: Magnetohydrodynamic free convection boundary layer flow of non-newtonian tangent hyperbolic fluid from a vertical permeable cone with variable surface temperature. J. Braz. Soc. Mech. Sci. Eng. 39(1), 101–116 (2017)

    Article  Google Scholar 

  7. Ghiasi, E.K., Saleh, R.: A convergence criterion for tangent hyperbolic fluid along a stretching wall subjected to inclined electromagnetic field. SeMA J. 76(3), 521–531 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hussain, A., Malik, M., Salahuddin, T., Rubab, A., Khan, M.: Effects of viscous dissipation on mhd tangent hyperbolic fluid over a nonlinear stretching sheet with convective boundary conditions. Results Phys. 7, 3502–3509 (2017)

    Article  Google Scholar 

  9. Kumar, K.G., Gireesha, B., Gorla, R.: Flow and heat transfer of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal radiation and magnetic field. Int. J. Mech. Mater. Eng. 13(1), 2 (2018)

    Article  Google Scholar 

  10. Mahmoud, M.A., Megahed, A.M.: Mhd flow and heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet with variable fluid properties. Can. J. Phys. 87(10), 1065–1071 (2009)

    Article  Google Scholar 

  11. Megahed, A.M.: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation. J. Egypt. Math. Soc. 27(1), 12 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Motsa, S., Dlamini, P., Khumalo, M.: A new multistage spectral relaxation method for solving chaotic initial value systems. Nonlinear Dyn. 72(1–2), 265–283 (2013)

    Article  MathSciNet  Google Scholar 

  13. Motsa, S.S., Awad, F.G., Makukula, Z.G., Sibanda, P.: The spectral homotopy analysis method extended to systems of partial differential equations. Abstr. Appl. Anal. (2014). https://doi.org/10.1155/2014/241594. (Article ID 241594)

    Article  MathSciNet  MATH  Google Scholar 

  14. Motsa, S.S., Dlamini, P.G., Khumalo, M.: Spectral relaxation method and spectral quasilinearization method for solving unsteady boundary layer flow problems. Adv. Math. Phys. (2014). https://doi.org/10.1155/2014/341964. (Article ID 341964)

    Article  MathSciNet  MATH  Google Scholar 

  15. Motsa, S.S., Magagula, V.M., Goqo, S.P., Oyelakin, I.S., Sibanda, P.: A multi-domain spectral collocation approach for solving lane-emden type equations. In: Lopez-Ruiz, R. (ed.) Numerical Simulation-From Brain Imaging to Turbulent Flows, Chap. 7, pp. 142–166. InTech, Croatia (2016)

    Google Scholar 

  16. Nadeem, S., Akram, S.: Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. Zeitschrift für Naturforschung A 64(9–10), 559–567 (2009)

    Article  Google Scholar 

  17. Nagaraja, L., Reddy, M.S., Reddy, M.S.: Magnetic field effect on tangent hyperbolic fluid towards porous plate with suction/injection. Res. J. Sci. Technol. 9(4), 592–596 (2017)

    Article  Google Scholar 

  18. Oyelakin, I., Mondal, S., Sibanda, P.: A multi-domain spectral method for non-darcian mixed convection flow in a power-law fluid with viscous dissipation. Phys. Chem. Liq. 56(6), 771–789 (2018)

    Article  Google Scholar 

  19. Oyelakin, I.S., Mondal, S., Sibanda, P., Motsa, S.S.: A multi-domain bivariate approach for mixed convection in a casson nanofluid with heat generation. Walailak J. Sci. Technol. (WJST) 16(9), 681–699 (2018)

    Google Scholar 

  20. Pal, D., Mondal, H.: Influence of temperature-dependent viscosity and thermal radiation on mhd forced convection over a non-isothermal wedge. Appl. Math. Comput. 212(1), 194–208 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Prabhakar, B., Bandari, S., Haq, R.U.: Impact of inclined lorentz forces on tangent hyperbolic nanofluid flow with zero normal flux of nanoparticles at the stretching sheet. Neural Comput. Appl. 29(10), 805–814 (2018)

    Article  Google Scholar 

  22. Salahuddin, T., Malik, M., Hussain, A., Awais, M., Khan, I., Khan, M.: Analysis of tangent hyperbolic nanofluid impinging on a stretching cylinder near the stagnation point. Results Phys. 7, 426–434 (2017)

    Article  Google Scholar 

  23. Salahuddin, T., Malik, M., Hussain, A., Bilal, S., Awais, M.: Effects of transverse magnetic field with variable thermal conductivity on tangent hyperbolic fluid with exponentially varying viscosity. AIP Adv. 5(12), 127103 (2015)

    Article  Google Scholar 

  24. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Oyelakin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyelakin, I.S., Sibanda, P. Analysis of exponentially varying viscosity and thermal conductivity on a tangent hyperbolic fluid. SeMA 77, 257–273 (2020). https://doi.org/10.1007/s40324-020-00215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-020-00215-0

Keywords

Mathematics Subject Classification

Navigation