Skip to main content
Log in

Computational Study of MHD Free Convection Flow of Non-Newtonian Tangent Hyperbolic Fluid from a Vertical Surface in Porous Media with Hall/Ionslip Currents and Ohmic Dissipation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A numerical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD) free convection boundary layer flows of non-Newtonian tangent hyperbolic fluid past a vertical surface in a non-Darcy, isotropic, homogenous porous medium in the presence of Hall currents and Ionslip currents. The governing nonlinear coupled partial differential equations for momentum conservation in x and z directions, heat and mass conservation in the flow regime are transformed from an (x, y, z) coordinate system to (\(\upxi ,\upeta \)) coordinate system in terms of dimensionless x-direction velocity (\(f^{\prime }\)) and z-direction velocity (G), dimensionless temperature and concentration functions (\(\uptheta \) and \(\upphi \)) under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also heat and mass transfer rates. Increasing Weissenberg number (We) is observed to decrease primary and secondary velocity and concentration but increase temperature. It is found that the primary and secondary velocity is increased with increasing power law index (n) whereas the temperature and concentration are decreased. Increasing hall and Ionslip current (\(\beta _{e}\) and \(\beta _{i}\)) is observed to increase primary velocity but decreases secondary velocity, temperature and concentration. Increasing magnetic parameter (\(N_{m}\)) is seen to decrease primary velocity but decreases secondary velocity, temperature and concentration. Increasing Darcy number (Da) is found to increase primary and secondary velocity whereas decreases temperature and concentration. Increasing Forchheimer parameter (Fs) is seen to decrease primary and secondary velocity but increases temperature and concentration. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramachandra Prasad, V., Subba Rao, A., Bhaskar Reddy, N., Vasu, B., Bég, O.A.: Modelling laminar transport phenomena in a Casson rheological fluid from a horizontal circular cylinder with partial slip. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 227(4), 309–326 (2013)

    Article  Google Scholar 

  2. Norouzi, M., Davoodi, M., Bég, O.A., Joneidi, A.A.: Analysis of the effect of normal stress differences on heat transfer in creeping viscoelastic Dean flow. Int. J. Therm. Sci. 69, 61–69 (2013)

    Article  Google Scholar 

  3. Uddin, M.J., Yusoff, N.H.M., Bég, O.A., Ismail, A.I.: Lie group analysis and numerical solutions for non-Newtonian nanofluid flow in a porous medium with internal heat generation. Phys. Scripta 87(2), 14, Art ID:025401 (2013)

  4. Ramachandra Prasad, V., Abdul gaffar, S., Kesava Reddy, E., Beg, O.A.: Flow and heat transfer of jeffreys non-Newtonian fluid from horizontal circular cylinder. J. Thermophys. Heat Transf. 28(4), 764–770 (2014)

    Article  Google Scholar 

  5. Kennedy, W.C., Hughes, W.F.: The steady state performance, magneto-acoustical response and stability of flow in a Hall MHD generator. Int. J. Eng. Sci. 11(11), 1143–1160 (1973)

    Article  Google Scholar 

  6. Uddin, M.J., Bég, O.A., Amin, N.S.: Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing. J. Magn. Magn. Mater. 368, 252–261 (2014)

    Article  Google Scholar 

  7. Li, F.-C., Kunugi, T., Serizawa, A.: MHD effect on flow structures and heat transfer characteristics of liquid metal-gas annular flow in a vertical pipe. Int. J. Heat Mass Transf. 48(12), 2571–2581 (2005)

    Article  MATH  Google Scholar 

  8. Bég, O.A., Hoque, M.M., Wahiuzzaman, M., Mahmud, M., Ferdows, M.: Spectral numerical simulation of laminar magneto-physiological Dean flow. J. Mech. Med. Biol. 14(3) (2014) (18 pages)

  9. Khan, U., Sinkandar, W., Ahmed, N., Mohyud-Din, S.T.: Effects of velocity slip on MHD flow of a non-Newtonian fluid in converging and diverging channels. Int. J. Appl. Comput. Math. pp. 1–15 (2015). doi:10.1007/s4081901500715

  10. Khan, U., Ahmed, N., Mohyud-Din, S.T.: Thermo-diffusion, diffusion-thermo and chemical reaction effects on MHD flow of viscous fluid in divergent and convergent channels. Chem. Eng. Sci. 141, 17–27 (2016)

    Article  Google Scholar 

  11. Rao, B.N., Mittal, M.L.: Magnetohydrodynamic boundary layer on a wedge. ASME J. Appl. Mech. 48, 656–659 (1981)

    Google Scholar 

  12. Hossain, M.A.: Effect of Hall current on unsteady hydromagnetic free convection flow near an infinite vertical porous plate. J. Phys. Soc. Jpn. 55(7), 2183–2190 (1986)

    Article  Google Scholar 

  13. Raju, T.L., Rao, V.V.R.: Hall effects on temperature distribution in a rotating ionized hydromagnetic flow between parallel walls. Int. J. Eng. Sci. 31(7), 1073–1091 (1993)

    Article  MATH  Google Scholar 

  14. Sawaya, E., Ghaddar, N., Chaaban, F.: Evaluation of the Hall parameter of electrolyte solutions in thermosyphonic MHD flow. Int. J. Eng. Sci. 31(7), 1073–1091 (1993)

    Article  Google Scholar 

  15. Bhargava, R., Takhar, H.S.: Effect of Hall currents on the MHD flow and heat transfer of a second order fluid between two parallel porous plates. J. MHD Plasma Space Res. 10, 73–87 (2001)

    Google Scholar 

  16. Cramer, K.R., Pai, S.-I.: Magnetofluid Dynamics for Engineers and Applied Physicists. McGraw-Hill, New York (1973)

    Google Scholar 

  17. Soundalgekar, V.M., Vighnesam, N.V., Takhar, H.S.: Hall and ion-slip effects in the MHD Couette flow with heat transfer. IEEE Trans. Plasma Sci. 7, 178–182 (1979)

    Article  Google Scholar 

  18. Ram, P.C., Takhar, H.S.: MHD free convection from an infinite vertical plate in a rotating fluid with Hall and ionslip currents. Fluid Dyn. Res. 11, 99–105 (1993)

    Article  Google Scholar 

  19. Ram, P.C., Singh, A., Takhar, H.S.: Effects of Hall and ionslip currents on convective flow in a rotating fluid with a wall temperature oscillation. J. Magnetohydrodyn. Plasma Res. 5, 1–16 (1995)

    Google Scholar 

  20. Takhar, H.S., Jha, B.K.: Effects of Hall and ion-slip currents on MHD flow past an impulsively started plate in a rotating system. J. Magnetohydrodyn. Plasma Res. 8, 61–72 (1998)

    Google Scholar 

  21. Elshehawey, E.F., Eldabe, N.T., Elbarbary, E.M., Elgazery, N.S.: Chebyshev finite-difference method for the effects of Hall and ion-slip currents on magneto-hydrodynamic flow with variable thermal conductivity. Can. J. Phys. 82(9), 701–715 (2004)

    Article  Google Scholar 

  22. Michiypshi, I., Matsumoto, R.: Heat transfer by Hartmann’s flow in thermal entrance region. Int. J. Heat Mass Transf. 7, 1 (1964)

    Article  Google Scholar 

  23. Wu, R.-S., Cheng, K.C.: Thermal entrance region heat transfer for MHD laminar flow in parallel plate channels with unequal wall temperatures. Heat Mass Transf. J. 9(4), 273–280 (1976)

    Google Scholar 

  24. Mansour, M.A., Gorla, R.S.R.: Joule heating effects on unsteady natural convection from a heated vertical plate in a micropolar fluid. Can. J. Phys. 76(12), 977–984 (1998)

    Article  Google Scholar 

  25. Bég, O.A.: Computational fluid dynamic (Spectral DTM) simulation of Hartmann flow with Joule heating: applications in liquid metal processing, Technical Report, GORT Engovation-Aerospace Research, Bradford, November, UK (2012)

  26. Aissa, W.A., Mohammadein, A.A.: Joule heating effects on a micropolar fluid pasta stretching sheet with variable electric conductivity. J. Comput. Appl. Mech. 6(1), 3–13 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Ghosh, S.K., Bég, O.A., Aziz, A.: A mathematical model for magnetohydrodynamic convection flow in a rotating horizontal channel with inclined magnetic field, magnetic induction and Hall current effects. World J. Mech. 1(3), 137–154 (2011)

    Article  Google Scholar 

  28. Duwairi, H.M.: Viscous and Joule heating effects on forced convection flow from radiate isothermal porous surfaces. Int. J. Numer. Methods Heat Fluid Flow 15(5), 429–440 (2005)

    Article  Google Scholar 

  29. Zueco, J., Bég, O.A., Lopez-Ochoa, L.M.: Non-linear transient hydromagnetic partially ionised dissipative Couette flow in a non-Darcian porous medium channel with Hall, ionslip and Joule heating effects. Prog. Comput. Fluid Dyn. 11(2), 116–129 (2011)

    Article  MATH  Google Scholar 

  30. Gebhart, B., Mollendorf, J.: Viscous dissipation in external natural convection flows. J. Fluid Mech. 38, 97 (1969)

    Article  MATH  Google Scholar 

  31. Soundalgekar, V.M., Pop, I.: Viscous dissipation effects on unsteady free convective flow past an infinite vertical porous plate with variable suction. Int. J. Heat Mass Transf. 17(1), 85–92 (1974)

    Article  MATH  Google Scholar 

  32. Javeri, V.: Combined influence of Hall effect, ion slip, viscous dissipation and Joule heating on MHD heat transfer in a channel. Heat Mass Transf. 8(3), 193–303 (1975)

    Google Scholar 

  33. Takhar, H.S., Soundalgekar, V.M.: Dissipation effects on MHD free convection flow past a semi-infinite vertical plate. Appl. Sci. Res. 36, 163–171 (1980)

    Article  MATH  Google Scholar 

  34. Turcotte, D.L., Spence, D.A., Bau, H.H.: Multiple solutions for natural convective flows in an internally heated, vertical channel with viscous dissipation and pressure work. Int. J. Heat Mass Transf. 25(5), 699–706 (1982)

    Article  MATH  Google Scholar 

  35. Basu, T., Roy, D.N.: Laminar heat transfer in a tube with viscous dissipation. Int. J. Heat Mass Transf. 28(3), 699–701 (1985)

    Article  MATH  Google Scholar 

  36. Barletta, A.: Laminar mixed convection with viscous dissipation in a vertical channel. Int. J. Heat Mass Transf. 41(22), 3501–3513 (1998)

    Article  MATH  Google Scholar 

  37. Barletta, A., Rossi di Schio, E.: Effect of viscous dissipation on mixed convection heat transfer in a vertical tube with uniform wall heat flux. Heat Mass Transf. J. 38(1), 129–140 (2001)

    Article  Google Scholar 

  38. Chen, K.S., Ho, J.R.: Effects of flow inertia on vertical, natural convection in saturated porous media. Int. J. Heat Mass Transf. 29(5), 753–759 (1986)

    Article  MATH  Google Scholar 

  39. Manole, D.M., Lage, J.L.: The inertia effect on natural convection within a fluid saturated porous medium. Int. J. Heat. Fluid Flow 14, 376–384 (1993)

    Article  Google Scholar 

  40. Pop, I., Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon, Amsterdam (2001)

    Google Scholar 

  41. Nadeem, S., Akram, S.: Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. ZNA 64a, 559–567 (2009)

    Google Scholar 

  42. Nadeem, S., Akram, S.: Magnetohydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer. Acta Mech. Sin. 27(2), 237–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Akbar, N.S., Nadeem, S., Haq, R.U., Khan, Z.H.: Numerical solution of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J. Phys 87(11), 1121–1124 (2013)

    Article  Google Scholar 

  44. Ramachandra Prasad, V., Abdul gaffar, S., Kesava Reddy, E., Beg, O.A.: Computational Analysis of magnetohydrodynamic free convection flow and heat transfer of non-Newtonian Tangent Hyperbolic Fluid form a horizontal circular cylinder with partial slip. Int. J. Appl. Comput. Math. 1(4), 651–675 (2015)

    Article  MathSciNet  Google Scholar 

  45. Prasad, V.R., Gaffar, S.A., Reddy, E.K., Beg, O.A.: Free convection flow and heat transfer of non-Newtonian tangent hyperbolic fluid form an isothermal sphere with partial slip. Arab. J. Sci. Eng. 39(11), 8157–8174 (2014)

    Article  Google Scholar 

  46. Bég, O.A., Makinde, O.D.: Viscoelastic flow and species transfer in a Darcian high-permeability channel. Pet. Sci. Eng. 76, 93–99 (2011)

    Article  Google Scholar 

  47. Keller, H.B.: Numerical methods in boundary-layer theory. Ann. Rev. Fluid Mech. 10, 417–433 (1978)

    Article  MathSciNet  Google Scholar 

  48. Rossi, C., Rouhani, M.D., Esteve, D.: Prediction of the performance of a Si-micro-machined microthruster by computing the subsonic gas flow inside the thrusters. Sens. Actuators 87, 96–104 (2000)

    Article  Google Scholar 

  49. Sturdza, P.: An aerodynamic design method for supersonic natural laminar flow aircraft, Ph.D. Thesis, Dept. Aeronautics and Astronautics, Stanford University, California, USA, December (2003)

  50. Croisille, J.-P.: Keller’s box-scheme for the one-dimensional stationary convection-diffusion equation. Computing 68(1), 37–63 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  51. Narayana, M., Sibanda, P., Motsa, S.S., Siddheshwar, P.G.: On double-diffusive convection and cross diffusion effects on a horizontal wavy surface in a porous medium. Boundary Value Probl. 88, 1–22 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Anwar, M.I., Khan, I., Sharidan, S., Salleh, M.Z.: Conjugate effects of heat and mass transfer of nanofluids over a nonlinear stretching sheet. Int. J. Phys. Sci. 7, 4081–4092 (2012)

    Article  Google Scholar 

  53. Shu, J.-J., Wilks, G.: Heat transfer in the flow of a cold, two- dimensional draining sheet over a hot, horizontal cylinder. Eur. J. Mech. B/Fluids 26, 1–5 (2007)

    Article  Google Scholar 

  54. Ali, F.M., Nazar, R., Arifin, N.M., Pop, I.: Unsteady shrinking sheet with mass transfer in a rotating fluid. Int. J. Numer. Methods Fluids 66, 1465–1474 (2011)

    Article  MATH  Google Scholar 

  55. Kaya, A.: Heat and mass transfer from a horizontal slender cylinder with a magnetic field effect. Therm. Sci. Technol. 31(2), 73–78 (2011)

    Google Scholar 

  56. Kumar, B.V.R., Murthy, S.V.K.: Soret and Dufour effects on double-diffusive free convection from a corrugated vertical surface in a non-Darcy porous medium. Transp. Porous Media 85, 117–130 (2010)

    Article  Google Scholar 

  57. Esfahanian, V., Torabi, F.: Numerical simulation of lead–acid batteries using Keller–box method. In: Lead-Acid Batteries (LABAT) Conference, Sofia, Bulgaria (2005)

  58. Sutton, G.W., Sherman, A.: Engineering Magneto-Hydrodynamics. MacGraw-Hill, New York (1965)

    Google Scholar 

  59. Dzung, L.S.: MHD generators with ion slip and finite electrode segments. In: Symposium on Magnetohydrodynamic Electrical Power Generation; Salzburg (Austria); 4–8 Jul, pp. 177–184 (1966)

  60. Hardianto, T., Harada, N.: Three-dimensional flow analysis in a Faraday-type MHD generator. IEEE Trans. Ind. Appl. 44, 90–100 (2008)

    Article  Google Scholar 

  61. Sutton, G.W., Robben, R.: Preliminary experiments on MHD channel flow in ionized gas. In: Proceedings of Eleventh International Symposium, Polytechnic Institute of Brooklyn, Brooklyn, New York, USA, vol. XI, 307-21 (1961)

  62. Elgazery, N.S.: The effects of chemical reaction, Hall and ion slip currents on MHD flow with temperature dependent viscosity and thermal diffusivity. Commun. Nonlinear Sci. Numer. Simul. 14, 1267–1283 (2009)

    Article  Google Scholar 

  63. Bég, O.A., Zueco, J., Ghosh, S.K.: Unsteady hydromagnetic natural convection of a short-memory viscoelastic fluid in a non-Darcian regime: network simulation. Chem. Eng. Commun. 198, 172–190 (2010)

    Article  Google Scholar 

  64. Prasad, V.R., Gaffar, S.A., Anwar Bég, O.: Non-similar computational solutions for free convection boundary-layer flow of a nanofluid from an isothermal sphere in a non-Darcy porous medium. J. Nanofluids 4, 1–11 (2015)

    Article  Google Scholar 

  65. Norouzi, M., Davoodi, M., Anwar Bég, O.: An analytical solution for convective heat transfer of viscoelastic flows in rotating curved pipes. Int. J. Therm. Sci. 90, 90–111 (2015)

    Article  Google Scholar 

  66. Abo-Eldahab, E.M., El Aziz, M.A.: Viscous dissipatio and Joule Heating effects on MHD-free convection from a vertical plate with power-law variation in surface temperature in the presence of Hall and ion-slip currents. Appl. Math. Model. 29, 579–595 (2005)

    Article  MATH  Google Scholar 

  67. Takhar, H.S., Gorla, R.S.R., Soundalgekar, V.M.: Radiation effects on MHD free convection flow of a radiating gas past a semi-infinite vertical plate. Int. J. Numer. Methods Heat Fluid Flow 6, 77–83 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdul Gaffar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffar, S.A., Prasad, V.R. & Reddy, E.K. Computational Study of MHD Free Convection Flow of Non-Newtonian Tangent Hyperbolic Fluid from a Vertical Surface in Porous Media with Hall/Ionslip Currents and Ohmic Dissipation. Int. J. Appl. Comput. Math 3, 859–890 (2017). https://doi.org/10.1007/s40819-016-0135-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0135-1

Keywords

Navigation