Skip to main content
Log in

Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the present analysis, we have modeled the governing equations of two dimensional hyperbolic tangent fluid model under the assumptions of long wavelength and low Reynolds number. The flow is investigated in a wave frame of reference moving with the velocity of the wave. The governing equations of hyperbolic tangent fluid have been solved using regular perturbation method. The expression for pressure rise has been calculated using numerical integrations. The behavior of different physical parameters have been discussed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Brown and T. K. Hung, “Computational and experimental investigations of two dimensional non linear peristaltic flows,” J. Fluid Mech. 83, 249–272 (1977).

    Article  MATH  Google Scholar 

  2. S. Nadeem and Safia Akram, “Peristaltic flow of a Williamson fluid in an asymmetric channel,” Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2009.07.026.

  3. Safia Akram and S. Nadeem, “Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: Closed form solutions,” J. Magn. Magn. Mater. 328, 11–20 (2013).

    Article  Google Scholar 

  4. Safia Akram, S. Nadeem, and M. Hanif, “Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field,” J. Magn. Magn. Mater. 346, 142–151 (2013).

    Article  Google Scholar 

  5. Kh. S. Mekheimer and Y. Abd elmaboud, “The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope,” Phys. Lett. A 372, 1657–1665 (2008).

    Article  MATH  Google Scholar 

  6. T. Hayat and N. Ali, “Peristaltically induced motion of a MHD third grade fluid in a deformable tube”, Physica A 370, 225–239 (2006).

    Article  Google Scholar 

  7. S. Nadeem, Safia Akram, and Noreen Sher Akbar, “Simulation of heat and chemical reactions on peristaltic flow of a Williamson fluid in an inclined asymmetric channel,” Iran. J. Chem. Chem. Eng. 32, 93–107 (2013).

    Google Scholar 

  8. Kh. S. Mekheimer, “Effect of the induced magnetic field on peristaltic flow of a couple stress fluid,” Phys. Lett. A 372, 4271–4278 (2008).

    Article  MATH  Google Scholar 

  9. A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long wave length at low Reynolds number,” J. Fluid Mech. 37, 799–825 (1969).

    Article  Google Scholar 

  10. T. W. Latham, M. Sci. Thesis (Massachusetts Institute of Technology, Cambridge, 1966).

    Google Scholar 

  11. Safia Akram and S. Nadeem, “Significance of nanofluid and partial slip on the peristaltic transport of a Jeffrey fluid model in an asymmetric channel with different wave forms,” IEEE Trans. Nanotech. 13, 375–385 (2014).

    Article  Google Scholar 

  12. M. Mishra and A. R. Rao, “Peristaltic transport of a Newtonian fluid in an asymmetric channel,” Z. Angew. Math. Phys. 54, 532–550 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  13. Safia Akram, Kh. S. Mekheimer, and S. Nadeem, “Influence of lateral walls on peristaltic flow of a couple stress fluid in a non-uniform rectangular due,” Appl. Math. Inf. Sci 3, 1127–1133 (2014).

    Article  Google Scholar 

  14. M. H. Haroun, “Effect of Deborah number and phase difference on peristaltic transport in an asymmetric channel,” Commun. Nonlinear Sci. Numer. Simul. 12, 1464–1480 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. Safia Akram and S. Nadeem, “Consequence of nanofluid on Peristaltic transport of a hyperbolic Tangent fluid model in the occurrence of apt (tending) magnetic field,” J. Magn. Magn. Mater. 358–359, 183–191 (2014).

    Article  Google Scholar 

  16. G. Radhakrishnamacharya and Ch. Srinivasulu, “Influence of wall properties on peristaltic transport with heat transfer” C. R. Mecanique 335, 369–373 (2007).

    Article  MATH  Google Scholar 

  17. T. Hayat, Q. Hussain, and N. Ali, “Influence of partial slip on the peristaltic flow in a porous medium,” Physica A 387, 3399–3409 (2008).

    Article  MathSciNet  Google Scholar 

  18. A. Ebaid, “Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel,” Phys. Lett. A 372, 4493–4489 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Hayat, M. Umar Qureshi, and N. Ali, “The influence of slip on the peristaltic motion of a third order fluid in an asymmetric channel,” Phys. Lett. A 372, 2653–2664 (2008).

    Article  MATH  Google Scholar 

  20. S. Nadeem and Safia Akram, “Slip effects on the peristaltic flow of a Jeffrey fluid in an asymmetric channel under the effect of induced magnetic field,” Int. J. Numer. Methods Fluids doi: 10.1002/fld.2081.

  21. L. Ai and K. Vafai, “An investigation of Stokes second problem for non-Newtonian fluids,” Numer. Heat Transfer, Part A 47, 955–980 (2005).

    Article  Google Scholar 

  22. S. Nadeem and Safia Akram, “Peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel,” Z. Naturforschung A 64, 559–567 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akram.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, S., Nadeem, S. Effects of partial slip on the peristaltic transport of a hyperbolic tangent fluid model in an asymmetric channel. Comput. Math. and Math. Phys. 55, 1899–1912 (2015). https://doi.org/10.1134/S0965542515110147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515110147

Keywords

Navigation