Skip to main content
Log in

A well-balanced numerical model for depth-averaged two-layer shallow water flows

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this study, a well-balanced and positivity-preserving scheme for the nonconservative two-layer shallow water equations is developed in the framework of the path-conservative finite volume method. Special attention is paid to guaranteeing the well-balanced properties even in the presence of the wet–dry fronts for each layer. To this end, in this study, new numerical discretization and special local reconstruction are proposed. Moreover, the developed scheme also allows to stably compute flows in under-resolved meshes. The results of the numerical experiments illustrate the robustness and good performance of the constructed numerical scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abgrall R, Karni S (2009) Two-layer shallow water system: a relaxation approach. SIAM J Sci Comput 31:1603–1627

    Article  MathSciNet  Google Scholar 

  • Berthon C, Foucher F, Morales T (2015) An efficient splitting technique for two-layer shallow-water model. Numer Methods Partial Differ Equ 31:1396–1423

    Article  MathSciNet  Google Scholar 

  • Bollermann A, Chen G, Kurganov A, Noelle S (2013) A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J Sci Comput 56:267–290

    Article  MathSciNet  Google Scholar 

  • Bollermann A, Noelle S, Lukáčová-Medviďová M (2011) Finite volume evolution Galerkin methods for the shallow water equations with dry beds, Commun. Comput Phys 10:371–404

    Article  MathSciNet  Google Scholar 

  • Castro MJ, LeFloch PG, Muñoz-Ruiz ML, Parés C (2008) Why many theories of shock waves are necessary: convergence error in formally path-consistent schemes. J Comput Phys 227:8107–8129

    Article  MathSciNet  Google Scholar 

  • Dal Maso G, Lefloch PG, Murat F (1995) Definition and weak stability of nonconservative products. Journal de mathématiques pures et appliquées 74:483–548

    MathSciNet  MATH  Google Scholar 

  • Diaz MJC, Kurganov A, de Luna TM (2019) Path-conservative central-upwind schemes for nonconservative hyperbolic systems, ESAIM. Math Model Numer Anal 53

  • Dumbser M, Hidalgo A, Zanotti O (2014) High order space-time adaptive ader-weno finite volume schemes for non-conservative hyperbolic systems. Comput Methods Appl Mech Eng 268:359–387

    Article  MathSciNet  Google Scholar 

  • Gottlieb S, Shu C-W, Tadmor E (2001) Strong stability-preserving high-order time discretization methods. SIAM Rev 43:89–112

    Article  MathSciNet  Google Scholar 

  • Kurganov A, Noelle S, Petrova G (2001) Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J Sci Comput 23:707–740

    Article  MathSciNet  Google Scholar 

  • Kurganov A, Petrova G (2007) A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun Math Sci 5:133–160

    Article  MathSciNet  Google Scholar 

  • Kurganov A, Petrova G (2009) Central-upwind schemes for two-layer shallow water equations. SIAM J Sci Comput 31:1742–1773

    Article  MathSciNet  Google Scholar 

  • Kurganov A, Tadmor E (2000) New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J Comput Phys 160:241–282

    Article  MathSciNet  Google Scholar 

  • Lie K-A, Noelle S (2003) On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J Sci Comput 24:1157–1174

    Article  MathSciNet  Google Scholar 

  • Long RR (1956) Long waves in a two-fluid system. J Meteorol 13:70–74

    Article  MathSciNet  Google Scholar 

  • Muñoz-Ruiz ML, Parés C (2011) On the convergence and well-balanced property of path-conservative numerical schemes for systems of balance laws. J Sci Comput 48:274–295

    Article  MathSciNet  Google Scholar 

  • Nessyahu H, Tadmor E (1990) Nonoscillatory central differencing for hyperbolic conservation laws. J Comput Phys 87:408–463

    Article  MathSciNet  Google Scholar 

  • Ovsyannikov L (1979) Two-layer “shallow water’’ model. J Appl Mech Tech Phys 20:127–135

    Article  Google Scholar 

  • Parés C (2006) Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal 44:300–321

    Article  MathSciNet  Google Scholar 

  • Schijf J, Schönfled J (1953) Theoretical considerations on the motion of salt and fresh water, IAHR

  • Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995–1011

    Article  MathSciNet  Google Scholar 

  • van Leer B (1979) Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J Comput Phys 32:101–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng He.

Additional information

Communicated by Cassio Oishi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., He, J. A well-balanced numerical model for depth-averaged two-layer shallow water flows. Comp. Appl. Math. 40, 311 (2021). https://doi.org/10.1007/s40314-021-01698-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01698-x

Keywords

Mathematics Subject Classification

Navigation