Skip to main content
Log in

On the \(\Psi \)-fractional integral and applications

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Motivated by the \(\Psi \)-Riemann–Liouville \((\Psi -\mathrm{RL})\) fractional derivative and by the \(\Psi \)-Hilfer \((\Psi -\mathrm{H})\) fractional derivative, we introduced a new fractional operator the so-called \(\Psi \)-fractional integral. We present some important results by means of theorems and in particular, that the \(\Psi \)-fractional integration operator is limited. In this sense, we discuss some examples, in particular, involving the Mittag–Leffler \((\mathrm{M-L})\) function, of paramount importance in the solution of population growth problem, as approached. On the other hand, we realize a brief discussion on the uniqueness of nonlinear \(\Psi \)-fractional Volterra integral equation (\(\mathrm{VIE}\)) using \(\beta \)-distance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas S, Benchohra M, Mouffak, Graef JR, Henderson J (2011) Generalized double-integral Ostrowski type inequalities on time scales. Appl Math Lett 24(8):1461–1467

    Article  MathSciNet  Google Scholar 

  • Abbas S, Benchohra Mouffak M, Graef JR, Henderson J (2018) Implicit fractional differential and integral equations: existence and stability, vol 26. Walter de Gruyter GmbH, Munich

    Book  Google Scholar 

  • Almeida R (2017a) A Caputo fractional derivative of a function with respect to another function. Commun Nonlinear Sci Numer Simul 44:460–481

    Article  MathSciNet  Google Scholar 

  • Almeida R (2017b) Caputo-Hadamard fractional derivatives of variable order. Numer Funct Anal Optim 38(1):1–19

    Article  MathSciNet  Google Scholar 

  • Almeida R, Bastos NR, Monteiro MTT (2016a) Modeling some real phenomena by fractional differential equations. Math Methods Appl Sci 39(16):4846–4855

    Article  MathSciNet  Google Scholar 

  • Almeida R, Bastos N, Monteiro MTT (2016b) A fractional Malthusian growth model with variable order using an optimization approach. In: Proceedings da CMMSE, pp 51–54

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    MATH  Google Scholar 

  • Furati KM, Kassim M (2012) Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64(6):1616–1626

    Article  MathSciNet  Google Scholar 

  • Gordji ME, Baghani H, Baghani O (2011) On existence and uniqueness of solutions of a nonlinear integral equation. J Appl Math 2011:743923

    MathSciNet  MATH  Google Scholar 

  • Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV (2014) \({\rm M-L}\) functions, related topics and functions. Springer, Berlin

    MATH  Google Scholar 

  • Herrmann R (2011) Fractional calculus: an introduction for physicists. World Scientific, Singapore

    Book  Google Scholar 

  • Jumarie G (2006) New stochastic fractional models for malthusian growth, the poissonian birth process and optimal management of populations. Math. Comput. Model. 44(3):231–254

    Article  MathSciNet  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North-Holland Mathematics Studies, vol 207. Elsevier, Amsterdam

    Google Scholar 

  • Magin RL (2012) Fractional calculus in bioengineering. In: 2012 13th International Carpathian control conference, ICCC 2012

  • Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. World Scientific, Singapore

    Book  Google Scholar 

  • Maleknejad K, Nouri K, Mollapourasl R (2009) Existence of solutions for some nonlinear integral equations. Commun Nonlinear Sci Numer Simul 14(6):2559–2564

    Article  MathSciNet  Google Scholar 

  • Malthus TR (1798) An essay on the principle of population. J. Johnson in St Paul’s Church-yard, London

    Google Scholar 

  • Manam SR (2011) Multiple integral equations arising in the theory of water waves. Appl Math Lett 24(8):1369–1373

    Article  MathSciNet  Google Scholar 

  • Mittag-Leffler GM (1903) Sur la nouvelle fonction \(\mathbf{E}_{\mu }(x)\). C R Acad Sci Paris 137:554–558

    MATH  Google Scholar 

  • Moradi S, Anjedani MM, Analoei E (2015) On existence and uniqueness of solutions of a nonlinear Volterra–Fredholm integral equation. Int J Nonlinear Anal Appl 6(1):62–68

    MATH  Google Scholar 

  • O’Regan D, Meehan M (2012) Existence theory for nonlinear integral and integrodifferential equations, vol 445. Springer, New York

    MATH  Google Scholar 

  • Oldham K, Spanier J (1974) The fractional calculus. Theory and applications of differentiation and integration to arbitrary order, vol 111. Academic Press, New York

    MATH  Google Scholar 

  • Peng S, Wang J (2015) Existence and Ulam–Hyers stability of ODES involving two Caputo fractional derivatives. Electron. J. Qual. Theor. Differ. Equ. 2015(52):1–16

    Article  MathSciNet  Google Scholar 

  • Ray SS (2015) Fractional calculus with applications for nuclear reactor dynamics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Salim TO, Faraj AW (2012) A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 3:1–13

    Article  Google Scholar 

  • Samko SG (1995) Fractional integration and differentiation of variable order. Anal. Math. 21(3):213–236

    Article  MathSciNet  Google Scholar 

  • Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives, theory and functions. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  • Teerawat Wongyat MR (2016) The existence of solutions for Fredholm/Volterra equations and fractional differential equations via fixed point theorems using a \(\omega \)-distance functions, Thesis Mastership. Thammasat University

  • Teerawat Wongyat MR, Sintunavarat W (2017a) The existence and uniqueness of the solution for nonlinear Fredholm and \({\rm VIE}\)s together with nonlinear fractional differential equations via \(\omega \)-distances. Adv Differ Equ 1:211

    Article  Google Scholar 

  • Teerawat Wongyat MR, Sintunavarat W (2017b) The existence and uniqueness of the solution for nonlinear Fredholm and \({\rm VIE}\) via adapting-ceiling distances. J Math Anal 8(5):105–118

    MathSciNet  MATH  Google Scholar 

  • Vanterler da C. Sousa J, Capelas de Oliveira E (2017) A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator. arXiv:1709.03634

  • Vanterler da C. Sousa J, Capelas de Oliveira E (2018) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

  • Vanterler da C. Sousa J, Capelas de Oliveira E, Magna LA (2017) Fractional calculus and the ESR test. AIMS Math., pp 1–15

  • Vanterler da C. Sousa J, dos Santos MNN, Magna LA, Capelas de Oliveira E (2018) Validation of a fractional model for erythrocyte sedimentation rate. Comput. Appl. Math. https://doi.org/10.1007/s40314-018-0717-0

  • Wiman A (1905) Uber den fundamental satz in der theorie der funktionen \(\mathbf{E}_{\mu }(x)\). Acta Math 29:191–201

    Article  MathSciNet  Google Scholar 

  • Xu Y, Agrawal OP (2016) New fractional operators and function to fractional variational problem. Comput. Math. with Appl. https://doi.org/10.1016/j.camwa.2016.04.008

  • Zhou Y (2018) Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. 75:1–6

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the editor and anonymous referee for the suggestions that have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanterler da C. Sousa.

Additional information

Communicated by Vasily E. Tarasov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanterler da C. Sousa, J., Capelas de Oliveira, E. On the \(\Psi \)-fractional integral and applications. Comp. Appl. Math. 38, 4 (2019). https://doi.org/10.1007/s40314-019-0774-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0774-z

Keywords

Mathematics Subject Classification

Navigation